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a b s t r a c t

Diffusion modeling is rather broad in nature, and is important in the areas of estimation
and forecasting. Conventional models do not incorporate parameters that explicitly take
into account the size of the population, or, equivalently, the size of the potential market.
As a consequence, the models often fail to provide accurate forecasts, especially when
the diffusion process is in the take-off stage. Furthermore, since diffusion is not a strictly
deterministic process, forecasts should provide a measure of the underlying uncertainty of
the process by incorporating a stochastic process into the formulation of the models.

The aim of the present work is to fill this gap by proposing an aggregate diffusion
model, the ‘‘population’’ diffusionmodel (PDM),which incorporates the potentially varying
market size as a function of the corresponding population. This model realization provides
more accurate estimations and future forecasts of the diffusion process, especially when
compared to the conventional aggregate diffusion models.

© 2012 Published by Elsevier B.V. on behalf of International Institute of Forecasters.

1. Introduction

In the context of the contemporary competitive global
market, there are tremendous pressures on companies and
organizations, due to exponential growth and the intro-
duction of new technologies. Sustainable and disruptive
technologies play a critical role in shaping the success of
companies.

The introduction of innovative products into a market
is frequently connected to heavy investments, requiring
critical business planning in order to meet market
demand and competition. Industrial plans rolled out in
an attempt to attract and retain customers must be
forecasted precisely, in order to obtain the expected level
of adoptions and market shares. A failure to produce
accurate forecasts oftenhas dramatic results for the supply,
whether oversupply and unnecessary over-investment, or
under-utilization of a firm’s capacities.

∗ Correspondence to: Department of Informatics and Telecommunica-
tions, University of Athens, Panepistimioupolis, Illisia, Greece. Tel.: +30
210 7275 319.

E-mail address:michalak@di.uoa.gr (C. Michalakelis).

The most representative case is probably the telecom-
munications sector. It is one of the most significant con-
temporary investments, which refers to new technologies
and services that are subject to competition. Privatization
and deregulation, alongwith the effects of increasing com-
petition and the introduction of new services, will tend to
introduce new research problems. Diffusion forecasting is
among the most important of such problems, and aims to
face the high level of uncertainty and the consequent need
for risk management.

Moreover, estimating and forecasting the diffusion
patterns of the innovations is considered important for all
kinds of high technology markets. Characteristic examples
in the literature include the works of Teng, Grover, and
Guttler (2002), who suggest general diffusion patterns for
information technology innovations; and Linton (2002),
who presents a thorough overview of the literature,
before proposing a method for forecasting disruptive
and discontinuous innovations. In addition, Fildes and
Kumar (2002) review the telecommunications demand
forecasting literature.

Although forecasting models for established products
and services are well developed, new opportunities have
emerged due to the nature of the high technology product
market. Therefore, further methodological work should be
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carried out to identify the gaps that have opened up as a
result of changes in the market’s scope and structure.

The remainder of the paper is organised as follows. Sec-
tion 2 provides a short presentation of the background to
diffusion theory and models, together with the research
objectives and contribution of the present work. Section 3
describes the deterministic process for the ‘‘population’’
diffusion model (PDM). The model’s evaluation results are
presented in Section 4. The stochastic analogue of the
‘‘population’’ diffusion model (PDM) is presented in Sec-
tion 5, and its evaluation results are illustrated in Section 6.
The conclusions are presented in Section 7, together with
their limitations and directions for future research.

2. Background and objectives

2.1. Models for innovation diffusion

One of the central themes of the innovation field is
the mathematical modeling of innovation diffusion, which
pertains to different types of innovations under different
assumptions. The main findings can be summarized as
a bell-shaped curve depicting the frequency of adoption
against time and an S-shaped curve representing the
cumulative number of adopters. During the initial stages
of the innovation life cycle (the introduction stage), the
rate of adoption is relatively low. This is followed by the
take-off stage, characterised by a high rate of adoption.
Finally, the peak of the bell curve is reached, corresponding
to the inflection point of the cumulative adoption. After
this point, the adoption rate decreases until the market
saturation level is met asymptotically and the maximum
number of adopters has been reached. This situation
corresponds to the end of the life cycle of the innovation,
after which, in the case of high technology products, it is
usually replaced by its descendant generation.

Apart from the pioneering work of Gompertz (1825),
theworks of Bass (1969) and Rai (1999) represent the early
contemporary efforts to capture the diffusion dynamics.
These two works, together with the logistic family of
models (Bewley & Fiebig, 1988), such as the linear logistic
or Fisher–Pry model (Fisher & Pry, 1971), are the most
widely used diffusionmodels employed for estimating and
forecasting market demand.

All of the above models provide ‘‘S-shaped curve’’
estimations to describe the cumulative diffusion, which is
used to estimate and forecast the diffusion of innovations
at the aggregate level. This approach describes the total
market response, in contrast to econometricmodels,which
focus on the factors affecting the adoption of the studied
innovation by individuals.

Aggregate models are generally able to provide reliable
estimations of diffusion processes with respect to the
adoption of innovations into a market of reference.
One of their main fields of application is the sector
of high technology, and especially telecommunications.
An informative review of the forecasting of demand in
telecommunications is provided by Fildes and Kumar
(2002). Moreover, important research results on the
development and evaluation of diffusion models are
presented by Bewley and Fiebig (1988), Geroski (2000),

Jain and Rai (1988), Mahajan and Muller (1979), Mahajan,
Muller, and Bass (1990), Michalakelis, Varoutas, and
Sphicopoulos (2008) and Skiadas (1987). Extensions of
these models include cross-national influence (Kumar,
Ganesh, & Echambadi, 1998; Kumar & Krishnan, 2002;
Michalakelis, Dede, Varoutas, & Sphicopoulos, 2008) and
marketing variables (Mahajan & Peterson, 1979; Ruiz-
Conde, Leeflang, & Wieringa, 2006), in an attempt to
describe the process of adoption inmore detail. Most of the
resulting models are derived by incorporating functional
adjustments into the original formulation of a diffusion
model’s equation.

2.2. Research objectives and contribution

None of the approaches described above, despite em-
ploying a number of parameters and marketing variables,
explicitly take into consideration the influence of the
population size on the diffusion process, and consequently
incorporate it into the appropriate mathematical formula-
tions. The market potential, or saturation level, used in the
formulation of the models does not coincide with the ac-
tual size of the market population, nor does it depend on
it. Moreover, no relationship between these two quantities
is derived. In fact, theymay lead to substantial divergences
in forecasting, especially at certain stages of the diffusion
process, such as the take-off stage. This may turn out to be
a major deficiency in the context of diffusion analysis, es-
pecially in the case of rapid take-offs. The reason for this is
that the population size imposes a constraint on the further
acceleration of the innovation diffusion. This is common in
the case of a technological product, where the probability
of adopting another unit of the product decreases after the
first adoption, although it is not totally eliminated. Mobile
phones, broadband connections and personal computers
are some representative examples. Conventional diffusion
models do not usually provide accurate forecasts when the
diffusion process accelerates fast, since their forecasts tend
to diverge from the actual values recorded later, sometimes
substantially. For some important contributions to the task
of appraising the influence of the population on the diffu-
sion process, see Gruber (2001) and Gruber and Verboven
(2001).

Without limiting the value of the above contributions,
the first objective of the present work is to study the
influence of the target market’s size on the diffusion
process, by developing an aggregate diffusion model that
includes the population size of the market as an explicit
parameter which influences both the diffusion rate and
the market potential. This is an important contribution,
especially at the take-off stage of the diffusion life cycle,
where the inflection point has not been reached. At this
particular stage, the process is characterised by a high
level of skewness and flexibility. In such cases, forecasting
can contain a high level of uncertainty and have a major
effect on strategic planning. Since the life cycle of a typical
product is expected to be rather short, due to substitution
by its descendant generation, forecasting is usually based
on a limited amount of historical data.

A second objective is the development of a diffusion
model that is capable of providing a flexible inflectionpoint
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which is able to capture the flexibility and skewness of
the process and which is affected by the market size and
expressed as a function of it. Since the inflection point
of the ‘‘traditional’’ diffusion models occurs at a certain
level of capacity K (e.g., 50% of K for the logistic growth
model), there is a need for a newmodel which can describe
the diffusion process of high technology products, which
are usually characterized by asymmetric shapes and a
high level of skewness. This is described in more detail in
the next section, where the development of the proposed
model is presented.

The third objective of this research is to provide a mea-
sure which can quantify the level of forecast uncertainty. It
is worthmentioning thatmost of the research in the litera-
ture focuses on describing diffusion as a deterministic pro-
cess in time. However, diffusion processes should often be
modeled as dynamic phenomena, which can be described
by stochastic differential equations. One work that raised
this need is that of Eliashberg and Chatterjee (1986), who
present some arguments on the necessity of using stochas-
tic models, together with ways of introducing randomness
into a diffusion process study. In the end, an estimation of
the level of uncertainty in forecasts can provide valuable
input with respect to a firm’s available actions, predictions
for the future and even expectations for competition.

Another important objective here is the application of
the proposed diffusionmodel to a number of historical data
series, in order to evaluate its performance and its ability
to provide accurate forecasts. This is especially important
when the peak point is not included in the observations
available, which usually limits the forecasting ability of the
conventional models, due to the underlying uncertainty of
the process.

Given the above considerations, the present work is
devoted to the construction of a new diffusion model, the
‘‘population-diffusion model’’, or the PDM. The model turns
out to be able to capture the influence of the population
size on the procedure of estimating and forecasting
penetration in the case of high technology products. Two
formulations of the model are constructed, presented
and evaluated: the deterministic model and its stochastic
analogue. Evaluation was performed using historical data
on mobile phone subscribers from 22 countries over the
wider European area. The results demonstrate that not
only can the PDM provide accurate diffusion estimations
over a dataset that includes inflection points, but it can
also forecast future values quite accurately. In order to
compare the results of the PDM with the performances
of conventional diffusion models, the most representative
cases of the latter (the logistic, Gompertz and Bass
models) are also evaluated.Moreover, the evaluation of the
stochastic realization provided a range of forecasted values
that are also quite accurate, since they indicate lower and
upper bounds within which future recorded values are
expected to fall. The proposed diffusion model takes into
account the number of connections (services) provided
to the customer, not the physical number of devices. The
probability of purchasing the first connection is higher
than the probability of purchasing a second connection,
and so on.

The data used to evaluate the PDM were extracted
from the ITU (International Telecommunication Union)

database, describing the diffusion patterns of the countries
considered.

The accomplishment of the objectives of this work
will contribute significantly to both research and practice.
Research will benefit from the provision of new directions
for the development of a diffusion forecasting framework
by incorporating a number of influential parameters. This
will help improve our understanding of the diffusion
shapes in the high technology market, especially when
combined with our study of the underlying uncertainty.
For practitioners, our research findings will be very useful
for strategic planning and decision making, as they can be
applied in an increasingly competitive environment, since
more accurate a priori estimates of the diffusion pattern
can be derived, enhanced by the estimation of the level of
uncertainty provided by the stochastic analysis.

However, it should be clarified that the proposedmodel
and the corresponding analysis do not attempt to provide
a method for the estimation of time-variant saturation
levels, based on the population size, but only show the
effect of the population size on the diffusion process.

3. Deterministic ‘‘population’’ diffusion model (PDM)

3.1. Development of the model

Aggregate diffusionmodels, which describe cumulative
penetration, are derived by a differential equation of the
following general form (Seber & Wild, 2003):

dN(t)
dt

= d (N(t), p̄) · [f (K ,N(t))] . (1)

In the above equation, N(t) represents the total pene-
tration at time t , while K is the saturation level, or themax-
imum expected cumulative penetration of the innovation.
d(N(t), p̄) is a functionwhich represents a factor of propor-
tionality. The quantity f (K ,N(t)) represents the function
of the remaining market potential at time t , depending on
the saturation level of K and the number of adopters N(t)
at this time t . Finally, p̄ is the vector of the model parame-
ters, which are considered as constants over the period of
the study.

The most widely used aggregate diffusion models
are the linear logistic and Bass models, which create
symmetric S-curves. In Fig. 1, the diffusion shapes of some
of the most common models are illustrated for the same
saturation level of K , together with their inflection points,
where the diffusion rate becomes equal to zero before
starting to decrease. As was observed, the linear logistic
and Bass models are described by a symmetric diffusion
shape, with their inflection points at K/2. However, in
the case of high technology products, the corresponding
diffusion shapes are usually right skewed rather than
symmetric, since they follow a high initial rate of diffusion,
slowing down after that. Therefore, symmetric models
often fail to describe such cases adequately.

The non-symmetric Gompertzmodel,which exposes an
inflection point at the 37% of K , is sometimes considered
as more appropriate for describing a diffusion process.
Bemmaor and Lee (2002) made an important contribution
regarding the changes in parameter estimates of the Bass
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Fig. 1. Diffusion rates of the most popular aggregate models.

model, the coefficients of innovation, imitation and the
market penetration rate as a result of the underlying
heterogeneity of the population. They found significantly
opposite patterns in these parameters, depending on the
skew of the diffusion curve detected by a generalized
model.

According to the general formulation of diffusion
models described by Eq. (1), the linear logistic model is
described by:

dN(t)
dt

= rN(t) (K − N(t)) , (2)

and the Gompertz model by:

dN(t)
dt

= rN(t) ln


K
N(t)


. (3)

In the above equation, r is the coefficient of propor-
tionality, and K is the market potential (the maximum ex-
pected level of diffusion). However, in the case of rapid dif-
fusion rates, the asymmetric Gompertz model often fails
to provide accurate forecasts, as it does not take the ef-
fect of the population size into account; this is particularly
a problem when the available historical data do not in-
clude the inflection point. Thus, introducing a Gompertz-
like model would provide the ability to incorporate the ef-
fect of the population size into an appropriate formulation.
These considerations constitute the underlying explana-
tion for the construction of the proposed model.

Thus, in accordance with Eq. (1), the main assumptions
of the proposed model are:

d(N(t), p̄) = rN(t) ln

a + b

P
N(t)


, (4)

and the f (K ,N(t)) function is given by the following
equation:

f (K ,N(t)) = ln


K
N(t)


. (5)

Accordingly, the PDM is described by the following
differential equation:

dN(t)
dt

= rN(t) ln

a + b

P
N(t)


ln


K
N(t)


, (6)

where N(t) is the number of adopters (i.e., the number of
mobile connections in a mobile company, not the number
of devices) at time t , K is the saturation level, P is the
population size, and r is a coefficient of proportionality. It
should be noted that the population does not necessarily
refer to the number of individuals, but can describe the
number of households, or any otherwise defined unit of
adopters. It is obvious that if the nonnegative quantities a
and b take values of e and 0, respectively, Eq. (6) reduces
to the well known Gompertz model, thus eliminating the
effect of the population on the diffusion process. In Eq. (6),
the saturation level K may be equal to, less than, or greater
than the population size P .

The proposed model described by Eq. (6) is the most
appropriate, since, as Fig. 1 shows, it is capable of providing
a flexible inflection point which is affected by the market
size. More specifically, by observing Eq. (6), it becomes
clear that the ln


a + b P

N(t)


part of the equation is capable

of describing a fast acceleration of diffusion, as long as
N(t) is smaller than the population size, P . However,
when N(t) becomes equal to or greater than P , the
diffusion rate does not stop, but only slows down, thus
providing a better estimate of the consequent value of
the adoption rate. This reflects the possibility of one unit
of the population adopting a second or third unit of the
product. Moreover, the choice of the logarithmic function
retains the asymmetric property of the diffusion shape,
thus allowing the model to easily adapt and describe the
process, as illustrated in Fig. 2. For certain values of the
parameters a and b (e and 0, respectively), the model
coincides with the Gompertz model, as indicated by the
heavy line.

Consequently, based on its construction, the proposed
model is characterized by a high level of flexibility, which
is able to accommodate the peculiarities of any described
diffusion process. This is extremely important for the stage
before the inflection point, where the conventionalmodels
are not flexible enough to describe the non-symmetric
nature of the process. In addition, and due to the nature of
its construction, the PDM incorporates skewness into the
diffusion process, which also contributes to the flexibility
of the model.
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Fig. 2. Diffusion shape of the PDM for different values of the parameters and the same K .

To obtain the solution of the autonomous differential
equation (6), the following transformation of variables is
used:

u = ln

N
K


, (7)

and consequently,

N = Keu ⇒
dN
dt

= Keu
du
dt

; (8)

then, by using the equalities of Eq. (8), the initial Eq. (6) is
transformed to:

dN
dt

= Keu
du
dt

= −ruKeu ln

a +

bP
Keu


. (9)

The simplification of the terms in Eq. (9) leads to:

du
dt

= −ru ln

a +

bP
Keu


. (10)

In addition, the expansion of the ln

a +

bP
Keu

term into

a MacLaurin power series (Wrede & Spiegel, 2002) yields
the formulation of the differential equation, to be solved
as:

du
dt

= −ru

ln

a +

bP
K


−

bP
aK + bP

u


. (11)

Since ln

a +

bP
K


and bP

aK+bP are constant quantities, for
computational convenience they can be replaced by the
constants x and y, respectively.
Thus, by setting

x = ln

a +

bP
K


, y =

bP
aK + bP

, (12)

the initial equation, Eq. (11), after incorporating the
substitution in Eq. (12), becomes:

du
dt

= −ru(x − yu). (13)

Eq. (13) is an autonomous differential equation with the
following solution (Boyce & DiPrima, 2005):

u =
xe−rxtC

1 + ye−rxtC
. (14)

Eq. (14) provides the general solution of the differential
equation, and C is an arbitrary constant, known as the
constant of integration. However, in the case of an initial
value problem, C can be determined by substituting the
initial values into the general solution and solving the
equation with respect to C .

The substitution of the solution into the initial variable
transformation, described by Eq. (8), yields:

N = Ke
xe−rxt C

1+ye−rxt C , (15)

since it is an initial value problem and the integration con-
stant C can be calculated, as mentioned above, by incorpo-
rating the initial condition: N(0) = N0, into Eq. (15). Thus,

N0 = Ke
xC

1+yC or C =

ln


N0
K


x − y ln


N0
K

 . (16)

The substitution of C into the initial equation, Eq. (15), after
performing the necessary calculations, yields:

N = Ke

x ln


N0
K


e−rxt

x+y ln


N0
K


(e−rxt−1)

. (17)

Finally, reversing the substitution described by Eq. (12), or,
equivalently, substituting x and y for ln(a+

bP
K ) and bP

aK+bP ,
respectively, leads to the general formulation of the pro-
posed model, described by:

N = Ke

ln

a+ bP

K


ln


N0
K


e
−r ln


a+ bP

K


t

ln

a+ bP

K


+

bP
aK+bP ln


N0
K


e
−r ln


a+ bP

K


t
−1


. (18)

The solution presented in Eq. (18) can be represented
graphically by an S-shaped curve, and reduces again to the
formulation of theGompertzmodel if a and bbecomeequal
to e and 0, respectively.

4. Evaluation of the model

The evaluation of the PDM was performed using his-
torical data describing the diffusion of both 2G and 3G
mobile telephony over the population, for 22 countries in
the wider European area. The evaluation data were col-
lected from the International Telecommunication Union



Author's personal copy

592 C. Michalakelis, T. Sphicopoulos / International Journal of Forecasting 28 (2012) 587–606

Fig. 3. R2 values for the evaluated cases.

(ITU, http://www.itu.int), and correspond to the period
from 1995 to 2007. In addition to this, population data
were extracted from the Eurostat and ITU databases.

The procedure includes evaluating the model’s perfor-
mance in terms of its ability to estimate the correspond-
ing diffusion processes.Moreover, three of themostwidely
used models are also included in the evaluation process,
in order to provide comparative results regarding the PDM
performance. The estimation of the models’ parameters in
each case was performed by the nonlinear least squares
(NLS) estimation method.

The othermodels involved in the evaluation process are
the Gompertz model (Rai, 1999), the linear logistic model
(Bewley & Fiebig, 1988; Fisher & Pry, 1971) and the Bass
model (Bass, 1969), and their specifications are given by
the following formulations, which describe the number of
adopters N(t) at time t:

N(t) =
K

1 + e−a−bt
(19)

N(t) = Ke−e−a−bt
(20)

N(t) = K
1 − e−(p+q)t

1 +
q
p e

−(p+q)t
. (21)

Eqs. (19) and (20) are the solutions of the models
described by Eqs. (2) and (3), respectively. In all of the
models above, the parameter K represents the saturation
level of the market. In Eqs. (19) and (20), the parameters
a and b correspond to the rate and shape of the diffusion,
whereas the parameters p and q in the Bass model
(Eq. (21)) correspond to the coefficients of innovation
and imitation, respectively. p describes the probability of
potential adopters proceeding to an early adoption, and q
describes the probability of adopting the product or service
as a result of influential interactions with others who have
already adopted.

A number of characteristic results, corresponding to
cases with different diffusion rates, are illustrated in

Table 1
Evaluation of the participating diffusion models: statistical measures of
accuracy.

Min Max Mean

Linear logistic R2 0.973 0.995 0.981
MSE 1E−4 0.004 0.002
MAPE 0.035 9.28 0.205

Gompertz R2 0.981 0.994 0.99
MSE 0.001 0.004 0.002
MAPE 0.03 8.93 0.22

Bass R2 0.977 0.991 0.987
MSE 1E−4 0.003 0.002
MAPE 0.04 6.46 0.32

Population-diffusion R2 0.984 0.997 0.99
MSE 1E−4 0.003 0.002
MAPE 0.019 5.423 0.186

Figs. 5–8. The detailed results of the evaluation, together
with the historical data used, are included in Appendix A,
where the performance of the PDM is illustrated.

The statistical measures of accuracy calculated for all of
the evaluated datasets are presented in Table 1, where the
minimums (min), maximums (max) and means (mean) of
the calculated values are given. Aswas observed earlier, the
coefficient of determination (R2) for the proposed model
is quite high, showing that it is managing to describe
the observed data adequately. In addition, the calculated
errormeasures, namely theMean Squared Error (MSE) and
the Mean Absolute Percentage Error (MAPE), are at quite
acceptably low levels. The calculated statistical measures
are illustrated in the plots of Figs. 3–5.

In addition to the evaluation of the PDM’s ability to
estimate diffusion accurately, its forecasting ability was
also evaluated. This was achieved by splitting the available
datasets into two parts, the ‘‘training’’ and ‘‘holdback’’
(or holdout) datasets. The former were used for training
the model and estimating its parameters, whereas the
latter were used for comparing the actual recorded values
with the forecasts from the models. The holdback samples
include historical data from 1995 until one year before
the inflection point (the maximum recorded penetration
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Fig. 4. MSE values for the evaluated cases.

Fig. 5. MAPE values for the evaluated cases.

Fig. 6. Diffusion estimation of the population-diffusion model, using actual data for the Netherlands, compared with the performances of other diffusion
models.
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Fig. 7. Diffusion estimation of the population-diffusion model, using actual data for Belgium, compared with the performances of other diffusion models.

Fig. 8. Diffusion estimation of the population-diffusion model, using actual data for France, compared with the performances of other diffusion models.

value, before the diffusion process slowed down), in
each case considered. The model parameters were then
estimated again by the NLS estimation method. Some
of the evaluation results are illustrated in Figs. 9–12,
showing the diffusion (y-axis) over time (x-axis). The
y-axis corresponds to the penetration level (percentage
of adoptions over population). As observed, the PDM
manages to forecast the diffusion process accurately, even
before the inflection point has been reached, while the rest
of the participating models fail. From Figs. 9 to 12, it is
clear that the PDM forecasts are close to the observed data,
particularly if the simulation is continued after 2007.

Detailed results of the evaluation of the models’
forecasting abilities for all of the datasets are presented in
Appendix B.

The main finding of the last evaluated case, with
respect to the forecasting ability of the proposed model,
is that attempting to forecast using conventional models
before the inflection point provides results which diverge
observably from the actual future values. This is because
the population size of the market that slows down the
diffusion rate does not participate as a parameter in any
of the other evaluated benchmark models.

In Table 2, the estimated market potentials for all of
the evaluated models and the participating countries are
presented. By observing the corresponding values, it can
be shown that the PDM can forecast the market potential
quite accurately, especially when the conventional models
provide observably diverging estimates.

As a final step, and in order to demonstrate the
importance of the population size P , a sensitivity analysis is
performed. More specifically, the changes in the forecasts
are estimated for different values of P . The corresponding
results are presented in Fig. 13 for the case of Belgium.

In the above diagrams, themodel is evaluated for the ac-
tual population, PDM (P), for 20% and 50% increases in the
population, PDM (1, 2∗P) and PDM (1, 5∗P) respectively,
and for a 20% decrease, PDM (0, 8∗P). As observed, there
is a substantial change in the estimated forecasts with re-
spect to both the adoption rate and the saturation level.
Sensitivity results reveal the necessity for the precise spec-
ification of the population parameter, P , in the proposed
model.

5. Stochastic ‘‘population’’ diffusion model (PDM)

5.1. The need for stochastic analysis

Despite the fact that diffusion models often succeed in
describing a diffusion process, stochastic considerations
are usually ignored. Nevertheless, they are of major im-
portance, due to the existence of rapidly changing environ-
mental socioeconomic factors, which in turn affect the dif-
fusion’s characteristics by adding randomness to the adop-
tion pattern (Eliashberg & Chatterjee, 1986). Moreover,
the deterministic realizations of diffusion models are able
to provide discrete estimations of the process, whereas
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Fig. 9. Forecasting evaluation of the ‘‘population-diffusion’’ model, using actual data for Greece with a holdback sample, compared with the performances
of the other participating diffusion models.

Fig. 10. Forecasting evaluation of the ‘‘population-diffusion’’ model, using actual data for the Netherlands with a holdback sample, compared with the
performances of the other participating diffusion models.

Fig. 11. Forecasting evaluation of the ‘‘population-diffusion’’ model, using actual data for Belgium with a holdback sample, compared with the
performances of the other participating diffusion models.

stochastic models are capable of quantifying the uncer-
tainty caused by factors which can be either internal or ex-
ternal to the system, thus providing a set of possible sce-
narios of the process at each point of time. In addition, no
matter how sophisticated a deterministic model is, it can-
not include every single factor that could possibly affect the
process. Sincemany of the external parameters are random
in nature, they cannot be estimated accurately and used for
forecasting purposes. In addition, a stochastic perspective
is especially vital, given the long-term forecasts that the

diffusionmodels can potentially provide and the existence
of several rapidly changing factors in the environment, as
well as in the interior of the system (Giovanis & Skiadas,
1999; Skiadas & Giovanis, 1997).

There are two main ways of introducing randomness
into a deterministic diffusion model in order to describe
the uncertainties that accompany a diffusion process. The
first is based on the assumption that the parameters of an
aggregate diffusion model follow a stationary stochastic
process (Karmeshu & Pathria, 1980). An interesting study
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Fig. 12. Forecasting evaluation of the ‘‘population-diffusion’’ model, using actual data for Francewith a holdback sample, comparedwith the performances
of the other participating diffusion models.

Table 2
Comparison of the estimated market potential for all models.

Logistic Gompertz Bass Population

Austria 1.4709 28.385 3.011 1.15
Belgium 2.2012 11.266 28124.645 1.00
Czech Republic 2.2220 2.222 1.033 1.06
Denmark 1.4563 4.559 13.464 1.30
Estonia 0.6869 1.098 0.827 1.47
Finland 0.9526 1.082 1.695 1.12
France 0.7003 0.798 0.707 1.03
Germany 0.8332 0.912 0.834 1.13
Greece 0.9513 1.876 1.010 1.24
Hungary 1.6750 132.934 2.220 1.13
Ireland 0.8847 1.169 0.901 1.21
Italy 1.0991 1.576 1.205 1.52
Latvia 0.8469 2.895 1.003 1.81
Lithuania 1481.0500 1.E+21 107755.236 1.83
Luxembourg 1.3478 2.695 1.510 1.33
Malta 6.7024 9.E+24 3.903 1.00
Netherlands 0.8421 1.015 0.842 1.14
Portugal 0.9128 1.184 0.949 1.20
Slovak Republic 0.8454 2.039 0.885 1.79
Spain 0.8829 1.311 0.884 1.18
Sweden 1.3296 2.528 2.635 1.21
United Kingdom 0.9152 1.086 0.910 1.18

Fig. 13. Sensitivity analysis of the ‘‘population-diffusion’’ model over actual data for Belgium, for different values of the population, P .

was undertaken byDebecker andModis (1994), to quantify
the uncertainties of the parameters determined by logistic
S-curve fits. The second approach involves assuming that
the future remaining growth of the underlying process is
not known with certainty, but can be modeled using an

appropriate stochastic process through an Ito’s stochastic
differential equation (SDE), taking into account the internal
and/or external fluctuations. Such a framework for a
stochastic substitution model was developed by Meade
(1989), whereas stochastic innovation diffusion models
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involving the introduction of stochasticity into the Bass
and logistic diffusion models, respectively, were proposed
by Skiadas and Giovanis (1997) and Giovanis and Skiadas
(1999). In the context of the present work, a stochastic
realization of the PDM is constructed and evaluated based
on the second approach described above, providing a
valuable way of measuring the uncertainty regarding the
forecasted future values.

5.2. Model development

Stochastic differential equations (SDEs) are used quite
frequently, and in a wide range of fields of application.
As was mentioned in the introductory section, the work
presented by Eliashberg and Chatterjee (1986) was one of
the earliest studies to propose the need to employ SDEs in
the estimation and forecasting of diffusion processes.

This section is devoted to the development of a
method of stochastic analysis for aggregate models, and
more specifically for the proposed population diffusion
model, PDM. The analysis is based on the addition of
a noise term to the initially developed model, which is
represented by a Wiener process. Wiener processes play
a vital role in stochastic calculus and diffusion processes.
This analysis is important as a measure of the volatility
of the deterministic process, since diffusion is frequently
characterized by uncertainty.

Stochastic differential equations are ordinary differ-
ential equations which are parameterized by means of
Wiener processes (Gardiner, 2004; Oksendal, 2003), in ad-
dition to time. AWiener process,Wt , is a non-differentiable
random function of time t , which is obtained by sampling
the normal probability density:

1
√
2π t

e−W2
t /2t . (22)

A general formulation of a stochastic differential equation
is given by the following relationship:

dN = f (N, t)dt + g(N, t)dW (t). (23)

In Eq. (23), dW (t) is 1-dimensional ‘‘white noise’’, the
time derivative of the Wiener process, and f (N, t), g(N, t)
are known functions (Evans, 2005). g(N, t) represents the
volatility, or the width of the noise of the process.

Recalling the general formulation of an aggregate
diffusion model, as described by Eq. (1), the addition of a
stochastic term yields:

dN(t) = d(N(t), p̄)
· {[f (K) − f (N(t))]dt + g · dW (t)}, (24)

or, equivalently:

dN(t) = d(N(t), p̄) · [f (K) − f (N(t))]dt
+ d(N(t), p̄) · g · dW (t). (25)

The application of the formulations described in Eqs.
(24) and (25) over the population model, as is described
by Eq. (6), provides its equivalent stochastic realization:

dN = rN ln

a + b

P
N


ln

K
N


dt + gdW (t)


, (26)

which, after performing the expansion of terms, becomes:

dN = rN ln

a + b

P
N


ln

K
N


dt

+ rN ln

a + b

P
N


gdW (t). (27)

The stochastic differential equation described by Eq.
(27) is a nonlinear stochastic differential equation. There-
fore, in order to estimate its parameters, a suitable trans-
formation should be applied so that the sde can be approx-
imated by an equivalent linear sde, based on the available
discrete time observations.

5.3. Local linearization

5.3.1. Function transformation
A number of approaches are available in the literature

for the linearization of a nonlinear diffusion process
(Bergstrom, 1990;Dembo&Zeitouni, 1987;Milstein, 1995;
Nikolau, 2005; Ozaki, 1985; Singer, 1993). For the needs of
the present work, the local linearization method proposed
by Shoji and Ozaki (1998) is adopted, as it provides a
better performance and more accurate results. According
to thismethod, the original stochastic differential equation
is locally approximated by a linear stochastic differential
equation, which is analytically tractable, since it can be
solved easily and the solution is expressed as a sample path
of the stochastic process. Thus, the discretized process can
be obtained by the discretization of the sample path.

The basic idea of the local linearizationmethod is based
on approximating a stochastic differential equation of the
form

dN = f (N, t)dt + σdW (t), (28)

using a linear differential equation

dN = LsNdt + σdW (t), (29)

with Ls being a real valued function and σ the volatility of
the process.

The local linearization methodology is applied over the
stochastic formulation of the population model expressed
by Eq. (27). Again, as in the deterministic formulation of
themodel and for the sake of computational simplification,
the constants x and y are substituted for the constant
quantities ln(a +

bP
K ) and bP

aK+bP , respectively. Therefore,
the corresponding stochastic differential equation that
describes the stochastic diffusion process becomes:

dN
dt

= rN(x − yN) ln

K
N


dt

+ rN(x − yN)gdW (t). (30)

In order to express Eq. (30) in a more tractable form,
similar to that of Eq. (28), which has a constant coefficient
for the diffusion term (volatility), a transformation nt =

ϕ(Nt) can be applied to Eq. (30). ϕ(Nt) must satisfy the
ordinary differential equation:

grN(x − yN)
dϕ
dN

= σ , σ constant. (31)
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The solution of Eq. (31) is:

ϕ =
σ

grx
ln


N
x − yN


, (32)

and N can be obtained by

N =
x

y + e−
ngrx
σ

. (33)

Thus, Eq. (32) is the transformation that should be
applied over Eq. (30) in order to derive a constant volatility
stochastic differential equation. The application of Ito’s
formula (Evans, 2005;Oksendal, 2003; Shoji &Ozaki, 1998)
gives:

dn =


rN(x − y) ln


K
N


dϕ
dt

+
g2r2N2

2
(x − yN)2

d2ϕ
dN2


dt + σdW (t). (34)

ϕ(Nt) is twice continuously differentiable, with the first
and second derivatives being described by Eqs. (35) and
(36), respectively:

dϕ
dN

=
σ

gr(x − yN)N
(35)

d2ϕ
dN2

= −
σ

gr
x + 2yN

(x − yN)2N2
. (36)

After substituting Eqs. (33), (35) and (36) into Eq. (34), the
latter becomes:

dn =


rN(x − y) ln


K
N


σ

grN(x − yN)

+
g2r2N2

2
(x − yN)2

σ 2

gr


x − 2yN

N2(x − yN)2


dt

+ σdW (t) (37)

or

dn =


ln

K
N


−

σ 2gr
2


ln

a + b

P
K


− 2

bP
aK + bP

N


dt + σdW (t). (38)

Therefore, the initial stochastic differential equation de-
scribed by Eq. (27) can be expressed in the form

dn = f̃ dt + σdWt , (39)

where

f̃ =
σ

g
ln

K
x


y + e−

ngrx
σ


−

grσ
2


x +

2yx

y + e−
ngrx
σ


. (40)

5.3.2. Linearization
The linearization of Eq. (38) is derived by applying the

methodology proposed by Shoji and Ozaki (1998), which
yields

nt = ns +
f̃
Ls

(eLs(t−s)
− 1)

+
Ms

L2s


eLs(t−s)

− 1

− Ls(t − s)


+ σ

 t

s
eLs(t−u)dWu. (41)

In Eq. (41), f̃ is given by Eq. (40), and Ls andMs by

Ls =
∂ f̃
∂n

and (42)

Ms =
σ 2

2
∂2 f̃
∂n2

+
∂ f̃
∂t

. (43)

The second part of the right-hand-side of Eq. (43) is
equal to 0, since it is the case of an autonomous equation.
Moreover, the integral term in Eq. (41) has a Normal
distribution, with mean 0 and variance given by

Vars(nt) = σ 2

e2Ls(t−s)

− 1
2Ls


. (44)

After solving Eq. (41), corresponding values of Nt can be
calculated by applying the relationship given by Eq. (33).

5.4. Parameter estimation of the discretized process

Since the discretized process locally follows a Gaussian
distribution, the log-likelihood can be obtained easily.
Therefore, the maximum likelihood method can be used
to estimate the model’s parameters. The log-likelihood
function is given by

log(p(n1, n2, . . . , nk)) =

k−1
j=1

log(p(nj+1|nj))

+ log(p(n1)). (45)

However, since nwas derived by applying the transfor-
mation ϕ(t) to the initial stochastic differential equation
of Eq. (27), the same transformation should be applied to
Eq. (45). This is necessary in order to remove the large vari-
ance, caused by changes in the ns, and is achieved by ap-
plying the transformation rule of a density function

p(N1,N2, . . . ,Nk) = p(n1, n2, . . . , nk)

×

 ∂(n1, n2, . . . , nk)

∂(N1,N2, . . . ,Nk)

 , (46)

where
 ∂(n1,n2,...,nk)
∂(N1,N2,...,Nk)

 is the Jacobian, and is equivalent tok−1
j=1

 dϕ
dN


N=Nj

.
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Finally, the log-likelihood for the stochastic population-
diffusion model, based on the linearized approach of Eq.
(41), is given by

log(p(N1,N2, . . . ,Nk))

= −
1
2

k−1
j=1


(nj+1 − Ej)2

Vj
+ log(2πVj)



+ log(p(n1)) +

k−1
j=1

log

 dϕdN

N=Nj


, (47)

where

Ej = nj +
f
Lj

(eLj∆t
− 1) +

Mj

L2j


(eLj∆t

− 1) − Lj∆t


(48)

Vj =
(eLj∆t

− 1)
2Lj

σ 2 (49)

Lj =
∂ f
∂n

(50)

Mj =
σ 2

2
∂2f
∂n2

+
∂ f
∂t

and (51)

f = f̃
∂ϕ

∂N
+

g2

2
∂2ϕ

∂n2
. (52)

Explicit formulas for the calculation of the parameter
that maximizes the log-likelihood function do not always
exist, as is the case for the function in Eq. (47). Therefore,
heuristic methods, such as Genetic Algorithms, are usually
employed for the estimation of a model’s parameters.
Genetic algorithms, as posited by Goldberg (1989), are
search algorithms based on the mechanisms of natural
selection and natural genetics. The key points of the
process are reproduction, crossover and mutation, which
are performed according to a given probability, just
as happens in the real world. Reproduction involves
copying (reproducing) solution vectors, crossover involves
swapping partial solution vectors, and mutation is the
process of randomly changing a cell in the string of
the solution vector, thus preventing the possibility of
the algorithm being trapped. The process continues until
it reaches the optimal solution of the fitness function.
Genetic algorithms have been applied for high technology
demand estimation (Venkatesan & Kumar, 2002).

In the context of the present work, the fitness function
to be optimized is the log-likelihood function, described by
Eq. (47), seeking to find its maximum value, based on the
historical data. In order to evaluate the model’s accuracy,
estimation was based on data from the period from 1994
to 1999. After 1999, diffusion slowed down, as the mar-
ket was about to reach saturation, and the rest of the mod-
els evaluated estimated extremely high saturation levels
which did not correspond to the actual values recorded in
later years.

The application of the genetic algorithms was based
on initial values equal to the ones estimated in the
deterministic case of the model. In addition, other,
randomly chosen, initial values were also used, in order to
avoid the algorithm getting trapped at local maxima. After
performing about 100,000 iterations, the process ended up

with a saturation level value (K ) of about 1.013. This can
be considered as quite a consistent result, since it does
not diverge from the value calculated for the deterministic
analogue (1.031).

6. Results of the stochastic model

Forecasts of the stochastic model are provided by sim-
ulating the solution given in the preceding section, based
on the parameters estimated by the maximum likelihood
method. Realizations of ∆Wt were generated using the
well-known Box–Muller method (Box & Muller, 1958).

Themodel was evaluated for the case of Greece, and the
corresponding results are shown in Fig. 14. As observed,
the stochastic formulation of themodel indicates the upper
and lower bounds of the expected demand values. How-
ever, the deterministic analysis only provides the lower
values. This simulation is performed using parameter val-
ues estimated using data for the period from 1995 to 1999
(holdback sample). The important outcome that accompa-
nies the results is the estimation of the uncertainty of the
forecasted values, together with the possible values diffu-
sion can take, according to the diffusion dynamics. As ob-
served, the deviation from the mean value can be quite
high. In the case of Greece, the deterministic PDM fore-
casted a saturation level of 1.24. However, the stochastic
analysis revealed that possible values vary from about 1.06
to 1.35. This stochastic analysis, together with the corre-
sponding results, can be a valuable guide for the construc-
tion of business plans and investments, since it provides a
measure of the deviation of the future expectations.

7. Conclusions and future work

The aim of this research was to contribute to the ex-
isting knowledge regarding diffusion estimation and fore-
casting, for both research and practice. This was attempted
by developing a diffusion model which explicitly incor-
porates the size of the market, as expressed by the cor-
responding population. The two formulations of the pro-
posed PDM, both deterministic and stochastic, provide
quite accurate results in terms of diffusion estimation and
forecasting, especiallywhen the rest of the aggregatemod-
els failed to do so, such as when the diffusion is described
by a high adoption rate.

In such cases, the widely used diffusion models cannot
predict the saturation level accurately, mainly because the
population is not taken into account. The proposed model
was evaluated using historical data from 22 European
countries, and provided accurate forecasts, even from the
early stages of the corresponding diffusion processes.

This study helped to move the consideration of innova-
tion diffusion towards the development of a diffusion fore-
casting framework, incorporating a number of driving fac-
tors and decision variables, and also helped increase the
understanding of high technology market trends. More-
over, the estimation of the underlying level of uncertainty
will stimulate further research, in order to produce more
accurate forecasts.

Themodel provides critical inputs for strategic planning
and decision making, in an increasingly competitive
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Fig. 14. Simulation of the stochastic formulation of the population model. The dashed line corresponds to the mean value of the process, which coincides
with the results of the deterministic formulation of the model.

Table 3
Percentage diffusion over the population of mobile telephony for countries in the wider European area.
Source: ITU.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Austria 0.05 0.07 0.14 0.28 0.52 0.76 0.81 0.83 0.89 0.98 1.06 1.13 1.19
Belgium 0.02 0.05 0.09 0.17 0.31 0.55 0.75 0.78 0.83 0.88 0.92 0.94 1.03
Czech Republic 0.00 0.02 0.05 0.09 0.19 0.42 0.68 0.84 0.95 1.05 1.15 1.22 1.25
Denmark 0.15 0.24 0.27 0.36 0.49 0.63 0.74 0.83 0.88 0.95 1.00 1.07 1.14
Estonia 0.02 0.05 0.11 0.18 0.29 0.41 0.48 0.65 0.78 0.94 1.09 1.25 1.48
Finland 0.20 0.29 0.41 0.54 0.63 0.72 0.80 0.87 0.91 0.95 1.00 1.08 1.15
France 0.02 0.04 0.10 0.19 0.35 0.49 0.62 0.65 0.69 0.74 0.79 0.85 0.90
Germany 0.05 0.07 0.10 0.17 0.28 0.59 0.68 0.72 0.78 0.86 0.96 1.04 1.18
Greece 0.02 0.05 0.08 0.19 0.35 0.54 0.72 0.84 0.81 0.84 0.92 0.99 1.10
Hungary 0.03 0.05 0.07 0.11 0.16 0.30 0.49 0.68 0.78 0.86 0.92 0.99 1.10
Ireland 0.00 0.07 0.13 0.23 0.41 0.65 0.77 0.76 0.87 0.95 1.03 1.13 1.16
Italy 0.00 0.11 0.20 0.35 0.52 0.73 0.89 0.94 0.98 1.08 1.23 1.35 1.35
Latvia 0.00 0.01 0.03 0.07 0.12 0.17 0.28 0.39 0.52 0.66 0.81 0.95 0.97
Lithuania 0.00 0.01 0.05 0.08 0.10 0.15 0.29 0.47 0.61 0.89 1.27 1.38 1.45
Luxembourg 0.06 0.10 0.15 0.29 0.46 0.70 0.93 1.06 1.19 1.02 1.10 1.17 1.30
Malta 0.03 0.03 0.04 0.06 0.09 0.29 0.61 0.70 0.73 0.77 0.81 0.86 0.91
Netherlands 0.03 0.06 0.11 0.21 0.42 0.68 0.76 0.75 0.82 0.91 0.97 1.06 1.06
Portugal 0.03 0.06 0.14 0.29 0.45 0.65 0.78 0.84 0.96 1.01 1.09 1.16 1.27
Slovak Republic 0.01 0.01 0.04 0.09 0.12 0.23 0.40 0.54 0.68 0.79 0.84 0.91 1.13
Spain 0.02 0.07 0.10 0.15 0.35 0.60 0.72 0.81 0.88 0.91 0.99 1.06 1.09
Sweden 0.22 0.28 0.35 0.46 0.57 0.72 0.81 0.89 0.98 0.98 1.01 1.06 1.14
United Kingdom 0.10 0.12 0.15 0.25 0.46 0.74 0.79 0.83 0.92 1.00 1.10 1.17 1.18

environment, by making accurate a priori estimates of the
diffusion pattern available. The results are enhanced by
the estimation of the level of uncertainty, provided by the
stochastic analysis. As observed, the stochastic formulation
of the model provides an indication of the upper and
lower bounds of the expected diffusion values, in contrast
to the deterministic analysis, which provides only the
lower limits. Thus, the model will enhance our ability to
develop effective strategies for introducing and adopting
new technologies.

As with any model, this model has certain limitations
that need to be investigated in future work, the first of
which is the population size, which was considered to be
constant over the evaluation period. Therefore, incorporat-
ing the population rate of changewould be expected to im-
prove the forecasting and estimation of the market satu-
ration level. Thus, a framework accommodating the flex-
ibility of the market ceiling, due to a varying population,
should be developed.

A second limitation of the current model is the as-
sumption that decision variables, such as price, are ex-
ogenous to the system. Allowing these variables to be

endogenous to the proposed model would improve the
forecasting further. In this direction, the development of
appropriate price elasticity functions and their incorpo-
ration into the model’s structure would provide signifi-
cant information regarding the impact of the price on the
diffusion process.

The inclusion of the above considerations in the
diffusion framework would provide important managerial
insights and new directions for research.

Appendix A. PDM evaluation results

This appendix presents the detailed evaluation results
from the PDM.

Moreover, the evaluation results from the Gompertz,
linear logistic and Bass models for the same dataset are
also included, for the sake of comparison. In addition,
the historical data for the evaluation process are given in
Table 3.
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Appendix B. PDM forecasting results

In this appendix, the forecasting ability of the proposed
model is evaluated, together with the results of the other

participating models, namely the Gompertz, linear logistic
and Bass models.
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