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Abstract

This paper examines and presents the diffusion rate of mobile telephony subscriptions in Greece. Following the

evaluation of the most widely used aggregate technology diffusion models (such as the Bass model, the Fisher–Pry model,

the Gompertz models and some representatives of the logistic variants), it becomes evident that these S-shaped models are

suitable enough for accurate fitting and forecasting the diffusion of mobile telephony. The analysis of the diffusion process

in Greece provides some interesting aspects of mobile penetration such as the correlation between the diffusion speed and

the number of competing operators as well as other socioeconomic and regulatory aspects. As a result of the estimation of

2G’s diffusion process parameters, the potential market size and the analysis of the techniques for the appropriate model

selection, this analysis can be considered as a means of providing an insight into the estimation of the diffusion shapes of

the forthcoming generations of mobile telephony and telecommunication products and services in Greece and elsewhere.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

As mobile communications have experienced significant development during recent years, a considerable
volume of research has been carried out with particular emphasis on their diffusion at national (Botelho &
Pinto, 2004) as well as at international level (Fildes & Kumar, 2002; Gruber, 2005) Mobile services have faced
rapid diffusion in Europe, as a result of technological change and governmental decisions and regulations, as
well as competition at national level (Gruber, 2005). The study of the diffusion process of mobile services is
of paramount importance in understanding the factors influencing further development of mobile net-
works towards the introduction of 3G/4G networks and the derived knowledge should be seriously taken
into consideration for building appropriate strategic plans and for constructing the necessary supporting
infrastructure.

Diffusion theory is a methodological approach used for estimating the adoption of technological
innovations or other products or services. Corresponding models based on diffusion theory are of major
importance for the determination of the product’s expected life cycle and associated parameters such as
maximum penetration. The cumulative diffusion shapes of innovations are often described by sigmoid
patterns, the so-called S-shaped growth patterns. The early stages of a diffusion pattern are usually based on a
e front matter r 2008 Elsevier Ltd. All rights reserved.
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number of early buyers (adopters). These initial adopters of the services are forming the ‘‘critical mass’’, which
is of critical importance for the ‘‘ignition’’ of the diffusion process and, consequently, for the saturation level
and the time it will be achieved. Innovators’ decisions to adopt the service are independent from the decisions
of the rest of the population. Apart from the innovators, there is another category of adopters, the imitators,
who proceed to the adoption of the service, influenced by interaction with innovators (word-of-mouth) and by
external influences such as mass media communication and other communication channels. Finally, the
market reaches maturity, when the maximum number of adopters among the considered population is met
(market saturation) (Mahajan, Muller, & Bass, 1990; Mahajan, Muller, & Srivastava, 1990).

Based on these concepts, the present work attempts to provide an insight concerning estimation and
forecasting of the underlying mechanics of mobile telephony. Towards this goal, a number of diffusion models
are employed in order to study their ability to capture diffusion process dynamics. The corresponding results
provide an overview of the estimations for the referenced market’s ultimate potential and can be considered
as the lower and upper forecasting boundaries of the ultimate values that the studied diffusion process of
mobile telephony in Greece is expected to reach. These aspects constitute the main functional utility of the
present work.
2. Mobile telecommunications sector in Greece—market overview

The telecommunications market in Greece is regulated by the National Telecommunications and Post
Commission (EETT, http://www.eett.gr), which was established in 1994, although it did not become actually
operational until 1998. The corresponding Ministry for Transport and Communications (MTC) retains
responsibility for drafting legislation.

As far as mobile telecommunications are concerned, it is worth mentioning that Greece is the only
European country that did not have any analog cellular network (although it was proposed in the late 1980s)
and was the first to award licences through a sealed bid auction procedure (Gruber, 2005). The first two GSM
900 licenses were awarded in August 1992 to Telecom Italia’s STET (later TIM and from mid-2007 WIND)
Hellas and Panafon (now Vodafone) for a $160 million fee each. They both started operating during the
following year with an exclusivity period for all mobile telecommunications frequencies, including GSM 1800
services, until 2000.

Greece’s incumbent fixed-line operator, OTE, was initially excluded from the bidding and this was unusual
for Western Europe, as the incumbent fixed-line monopolist was typically given a GSM licence. OTE was
awarded its own license no earlier than 1995 and through the establishment of a subsidiary, CosmOTE, which
was launched over a GSM 1800 network in April 1998, in order to operate mobile services. OTE exercises its
option for a de facto access to radio frequencies without any other competitive process like an auction or a
beauty-contest. CosmOTE was very successful in catching up with the competitors and was the first example
in Europe where a third entrant is able to become a market share leader so rapidly.

Following the considerable penetration of mobile services, additional frequencies at 1800MHz were
awarded to Vodafone-Panafon and STET Hellas, during May 2001 and additional frequencies in 900GHz for
CosmOTE. At this time, a 2G spectrum licence was awarded to a new entrant, Q-Telecom, which introduced
its services in 2002. Q-Telecom operated as a mobile network operator (MNO) in Athens, but in the rest of the
major cities in Greece, it provided services as a mobile virtual network operator (MVNO) through Vodafone’s
network, exploiting national roaming legislation.

In April 2004, CosmOTE launched i-mode wireless internet services, based on proprietary technology
licensed from Japan’s NTT DoCoMo. By the end of 2004, the service had 114,000 subscribers, corresponding
to 2.7% of CosmOTE’s subscriber base.

The current state of the Greek telecommunications market reveals that growth of 2G services was limited
during the years (2004–2005) as saturation was almost met. This can be also supported by the fact that new
subscriptions during 2004 represented a year-to-year growth of 6.4%, against 13.1% in 2003 and 14.1% in
2002. Even though Q-Telecom was the fourth ranked provider, it turned out to be a major player in the
market affecting growth positively. It managed to collect more than half of the new subscriptions in the year
2004, recording a growth of 96% as compared to 2003.

http://www.eett.gr
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Regarding ARPU (average revenue per user) figures, Greek mobile telecommunications providers are
favored as compared to other European providers ARPU rates (around 30h/month), which is even more
attractive given the lower GDP per capita (estimated at approximately 65% of the European average) of
Greece.

In addition, Greece’s mobile operators have benefited by increasing roaming revenues (due to tourist
industry growth), which is a significant percentage of their revenue stream as well as of significant SMS usage
rates (close to 30h/subscriber).

As far as 3G services are concerned, the regulator announced that the three existing operators (except for
Q-Telecom) would be awarded 3G licences, for which they bid a combined total of 484Mh. All three licensees
launched commercial 3G services before the end of 2004. A fourth license, which did not attract any bids, was
planned to be re-auctioned in 2006, however, this has not happened. Thus, there are three 3G operators, each
one holding a single licence for 3G services provision. Growth of 3G demand is not expected to take off in the
short run, since the majority of the corresponding services are limited because of network constraints. An
additional constraint to the rapid growth of 3G telephony is that most of the services were launched as
postpaid packages. As prepaid services currently merit a larger market share in users’ preferences than the
postpaid equivalents, success in adopting the 3G technology is strongly related to an intensive marketing effort
to persuade the users to migrate to the postpaid 3G telephony services.

3. Diffusion models for mobile telecommunications

The best known diffusion models used for technology diffusion purposes are the Bass model (Bass, 1969),
the Fisher–Pry model (Fisher & Pry, 1971), the logistic family models (Bewley & Fiebig, 1988), as well as the
Gompertz model (Gompertz, 1825; Rai, 1999). All these models provide an S-shaped curve describing
technology diffusion among specific populations. These models can provide demand forecasting at the
aggregate (population) level, rather than at the individual customer level. The latter approach can be described
by ‘‘choice-based’’ models, which mainly focus on estimating and quantifying individuals’ probability of
adopting the innovation, taking into account customer preferences and technology determinants/
characteristics. The underlining idea of these models is the maximization of customer’s perceived utility.

The aggregated S-type diffusion models can be derived from a differential equation such as

dY ðtÞ

dt
¼ d� Y ðtÞ � ½S � Y ðtÞ�, (1)

where Y(t) represents the total penetration at time t, S the saturation level of the specific technology (the
maximum expected adoption level) and d is a so-called coefficient of diffusion, which describes the diffusion

speed and correlates the diffusion rate with the actual and maximum penetration. It must be noted that the
saturation (maximum) level of penetration is a critical and often questionable parameter, especially in the light
of multiple subscriptions.

As can be observed in Eq. (1), diffusion speed is proportionate to (a) the population that has already
adopted the service, denoted by Y(t), and (b) the remaining market potential represented by S�Y(t).

The concepts of the diffusion theory introduced in the preceding paragraphs are depicted in Fig. 1, which
presents the diffusion process of a typical innovation, together with the categories of adopters throughout the
whole process. Apart from the innovators, the remaining categories are grouped together under the wider
category of imitators. The horizontal axis of the graph refers to the time variable and the vertical one to the
annual (or quarterly, or otherwise defined) penetration, expressed as a function of time. The time when the
maximum penetration is recorded is the ‘‘inflection point’’ and it refers to the maximum number of adoptions
within a time period. After this time, the rate of adoption declines until the product’s life cycle is ended,
usually by being substituted by its descendant generation. The graph can be easily transformed to show the
cumulative penetration over time, which produces the S-shaped curves previously described. One of the main
considerations of diffusion analysis is the selection of a model that best describes the diffusion process and the
consequent estimation of the corresponding parameters so as to provide the best possible fit to the dataset
considered. If this analysis provides reliable results matching the history of the process, forecasting of
subsequent diffusion will probably prove reliable as well.
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Fig. 1. Idealized diffusion process and life cycle of an innovation and distribution of adopters over time (Source: Mahajan, Muller, and

Srivastava (1990)).
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Data fitting ability and forecasting performance of some of these models, with respect to 2G mobile
telephony subscriptions in Greece, will be presented in this paper. The results are enriched with an analysis for
the selection of a model providing best fit to the particular dataset, a procedure which in turn indicates the
most reliable model to be used for forecasting purposes.

The discrete analog of the Bass model (Bass, 1969) is described by the following equation:

AðtÞ ¼ p�mþ ðq� pÞ � Y ðt� 1Þ �
q

m
½Y ðt� 1Þ�2, (2)

and the general form of the model:

AðtÞ ¼
m� ðpþ qÞ2

p
�

e�ðpþqÞt

½ðq=pÞ e�ðpþqÞt þ 1�2
, (3)

where m is the market potential (maximum possible adoptions envisaged) over the total period of reference. It
is used in the same sense as the parameter S (market’s saturation level), met in the rest of the diffusion models
employed in this work. The difference between m and S is that m refers to the maximum value of adoptions at
the peak time, whereas S is the aggregate market potential, related to the cumulative number of adoptions,
throughout the studied time period. Market potential m, of the Bass model, corresponds to the peak value of
instantaneous adoption, as shown in Fig. 1. In this way, diffusion increases, until the market potential is
reached and the time that this maximum occurs is the so-called peak time. After this time, adoption decreases
until the product’s life cycle closes and the product or service ceases to exist in the reference market. Parameter
p is the coefficient of innovation corresponding to the probability of an initial purchase at the beginning of the
product’s life cycle and is related to the size of the initial critical mass of adopters, the innovators. It is of major
importance and an influential factor for the rest of the diffusion process. Parameter q is the coefficient of
imitation and it refers to the size of the group of the remainder of possible future adopters, the imitators. As
defined in the Bass model, the parameters p and q represent the forces of innovative and imitative behavior,
assumed to operate in each market, and p+q can have a value different from 1. More specifically, innovators
are not influenced in the timing of adoption of the innovation, whereas imitators are influenced by social
interaction This interaction is quantified by the Y(t) variable which represents the number of previous
adopters or the cumulative adoptions up to time t. Finally, A(t) represents sales or, equivalently, adoption
during time period t. Both formulations (2) and (3) of the Bass model can be easily transformed so as to depict
cumulative diffusion, or cumulative penetration being in accordance with the rest of the models’ formulations.

Bass has also proposed a generalized version of the model to include decision variables, such as price and
advertising (Bass, Krishnan, & Jain, 1994). Decision variables, in this context, refer to the factors that are of
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major influence over potential adopters towards their decision to adopt the offered service. Application of
both the original and the generalized version of the Bass model over a number of datasets from different
environments offers evidence of the credibility of the model based on the success in fitting estimated over
historical data (Heeler & Hustad, 1980). However, estimation results were observably improved after using
exogenous sources of information to estimate the parameter m, as fluctuations in the early stages of
the diffusion process could produce inaccurate parameter estimates, thus reducing the model’s fitting
ability. Performance of the Bass model has also been studied with telecommunication sector data
(Wright, Upritchard, & Lewis, 1997), but other models’ fitting ability and comparison of results have not
yet been performed.

As far as the Gompertz models are concerned, two variations have been introduced in the literature (labeled
as Gompertz I and Gompertz II models, respectively). The Gompertz I model is described by

Y ðtÞ ¼ S e�e
�a�b�t

, (4)

where b40 is a scaling factor, S represents the saturation level and a is the parameter that is related to the
point of inflection. Y(t) is the estimated diffusion level at time t. The parameters that have to be estimated are
S, a and b. The exponential part of Eq. (4) can be rewritten as by substituting e�a with a constant parameter,
A. In this way, the alternative formulation of the Gompertz model is

Y ðtÞ ¼ S e�A e�b�t

. (5)

The second formulation of the Gompertz model is similar to the first and its parameters are defined similarly.
In both formulations, the parameters a and A are related to the time that diffusion reaches 37% of its upper
level (S e�1), and parameter b is a measure of the diffusion speed, or how rapidly the adoption progresses.

Concerning the logistic models, their general form is given by

Y ðtÞ ¼
S

1þ ef ðtÞ
, (6)

where Y(t) is the estimated diffusion level at time t, S denotes the saturation level and f(t) is described by the
mathematical formulation:

f ðtÞ ¼ �a� b� tðm; kÞ. (7)

The function t(m, k) is a nonlinear function of time in general (apart from the case of the linear logistic model,
where t(m, k) ¼ t) and may be described by any one of the following formulations, according to the model’s
construction.

In the linear instance of the model, the time function is

tðm; kÞ ¼ t. (8)

This model is also known as the Fisher–Pry model (Fisher & Pry, 1971).
In the Box– Cox case, the corresponding formulation of t(m, k) is given by

tðm; kÞ ¼
ð1þ tÞm � 1

m
, (9)

for k ¼ 0. If m ¼ 1, then the Box–Cox model coincides with the linear logistic.
Finally, the FLOG (flexible logistic model) formulation is described by

tðm; kÞ ¼
½ð1þ k � tÞ1=k

�m � 1

m
. (10)

The FLOG model is capable of describing the linear logistic and the Box–Cox models, if m, k are given specific
values. Thus, for k ¼ m ¼ 1, the FLOG model becomes the linear logistic, and for k ¼ 1 and m40, it
coincides with the Box–Cox.

The linear logistic model and the Gompertz models are described by functions that are monotonically
increasing between the bounds of zero and S. The linear logistic model is graphically depicted by a symmetric
S-curve and has an inflection point that occurs when Y(t) ¼ S/2. This property means that the maximum
growth rate is met when Y reaches half of its saturation level.
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On the other hand, the Gompertz model is asymmetric, with a point of inflection occurring at Y(t) ¼ S/e
which means that it is achieved when Y reaches 37% of its upper bound.

Because of the fact that the point of inflection is predetermined, either in a symmetric (linear logistic), or an
asymmetric (Gompertz) diffusion model, there is a strong need for a model that provides a data—determined
rather than constrained point of inflection and degree of symmetry. This requirement was the primary reason
for developing a category of flexible logistic models (FLOG models). Two representatives of this category
of models, namely the FLOG model and Box–Cox, are used in this paper and their performance with
telecommunications data is evaluated.

Another instance of the logistic family models employed for demand estimation is the Tonic model (TONIC,
2000). The model was developed within the IST-TONIC project and provided reasonably accurate fitting over
historical data related to high-technology products. IST-TONIC (TechnOecoNomICs of optimized networks
and services) is a project that concentrates on the economic evaluation of new communications networks and
services in order to identify economically viable solutions for furtherance of the Information Society). The
Tonic model can be considered as a generalization of the logistic model and its formulation is

Y ðtÞ ¼
S

ð1þ eaþb�tÞ
c . (11)

In the TONIC model, if c ¼ 1 then the derived formulation is the same as in the logistic model. S represents
the saturation level of penetration, as in the other models, whereas the rest of the parameters are related to the
other characteristics of the curve.
4. Model evaluation and results

The dataset used for this analysis comprises the 12 annual total mobile subscriptions in Greece from 1994
until September 2005 (Table 1). Market shares among the four mobile operators in Greece are also included,
and numbers include subscriptions from both the prepaid and postpaid sector. The construction of the table
was based on data distributed in the officially released results of the companies.

As the reported counts include both active and inactive subscribers, it is worth mentioning that reported
subscriptions are defined as the accounts created by operators that do not necessarily correspond to active
subscriptions, but to subscriptions for which a bill has been issued during the previous few months.

Regarding Greece’s population, the National Statistical Service of Greece (2005) reported a population of
approximately 10,964,000 people, in the year 2001, following the national census. In addition, Eurostat’s
estimation for population growth until the year 2009 reports a mean growth rate of about 21,000 people per
Table 1

Cumulative number of cellular phone subscribers and annual sales in Greece, 1994–2005 (3rd term)

Year Vodafone (ex.

Panafon)

CosmOTE TIM (ex.

Telestet)

Q-Telecom Total Annual

sales

Penetration Rate

1994 167,000 0.02

1995 273,000 106,000 0.02 0.00

1996 320,000 211,000 531,000 258,000 0.05 0.03

1997 547,000 391,000 938,000 407,000 0.09 0.04

1998 1,069,000 298,838 688,614 2,056,452 1,118,452 0.19 0.10

1999 1,663,000 1,048,352 1,182,751 3,894,103 1,837,651 0.35 0.16

2000 2,225,981 2,061,011 1,645,098 5,932,090 2,037,987 0.54 0.19

2001 2,884,872 2,943,532 2,135,338 7,963,742 2,031,652 0.72 0.18

2002 3,218,707 3,506,338 2,513,642 76,000 9,314,687 1,350,945 0.85 0.13

2003 3,782,737 3,917,010 2,402,777 366,536 10,469,060 1,154,373 0.95 0.10

2004 4,064,000 4,151,000 2,323,866 854,436 11,393,302 924,242 1.04 0.09

2005 (Q3) 4,302,142 4,509,000 2,257,312 907,886 11,976,340 583,038 1.09 0.05

Source: Annual reports of Greek mobile providers.
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Fig. 2. Diffusion of mobile telephony in Greece, 1994–2005 (Q3) (Source: Annual reports of Greek mobile providers).
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year (European Social Statistics, 2001). On the basis of these values, it was assumed that during the period of
interest (years 1994–2008), population would face an annual growth of about 0.2%.

As can be depicted from Fig. 2, the mobile subscriptions diffusion process follows an S-curve pattern and
the total penetration rate reached its maximum value in the year 2000. After this point, a decrease in the rate of
net subscriptions has been recorded. In addition, changes in market shares as result of ‘‘churn’’-effects and
different market strategies can be observed.

4.1. Methodology for diffusion analysis

In order to evaluate the diffusion process and the capability of the participating models to capture it with
accuracy, the actual penetration data of mobile telephony in Greece was used. This data was split into two
parts, ‘‘training data’’ and a ‘‘withheld sample’’. This approach relies on the exclusion of a portion of the real
data (withheld sample), corresponding to the last years’ observations, and uses the remaining historical data
(training data) to estimate the values of the models’ parameters, which provide the best estimation results.
Hereafter, the ‘‘trained’’ models are evaluated regarding their ability to forecast the excluded data, the
withheld sample. In order to increase the robustness of the evaluation of the present work, data concerning 1,
2 and 3 years of data were used as a withheld sample in an equal number of evaluations.

Mean absolute percentage error (MAPE) was selected as a forecast accuracy measure and calculated in each
case. MAPE was calculated for all sets of data and the model for which the smallest statistical error was
calculated is consequently considered to be the most appropriate to be used for forecasting future diffusion of
mobile services. It was also assumed that 2–3 years of forecasting should be sufficient mainly because of the
already saturated 2G market.

It should be also noted that, from an econometric point of view, even if the particular dataset may be
considered limited in size, the approach of withholding a portion of the dataset and using it to assess forecasts
is quite widely used for determining a model’s forecasting ability. This approach is in line with the technology
life cycle in general, since innovations and products particularly in the area of high technology usually enjoy
life cycles of only a few years’ duration, mainly because of the rapid and frequent substitution of a product’s
generation by its descendant ones.

4.2. Models evaluation and comparison

The ability of a model to provide a better fit to data often indirectly depends often on crucial factors, such as
the initial ‘‘critical mass’’ of adopters (subscribers), the attributes of the innovation, including the introductory
price and the communication channels, which influence the diffusion rate and the potential users’ perceived
utility gain, following the adoption of the product. As different types of innovations can lead to different
growth patterns, different diffusion models are considered more appropriate each time in order to provide
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Fig. 3. Cumulative subscriptions estimation of 2G mobile telephony in Greece. Yearly values to 2005 refer to models’ estimation ability

based on historical data. Subsequent values are forecasted results derived from each of the participating models.

Table 2

Estimation results and statistical measures of precision (whole dataset)

Bass

discrete

Bass

general

Gompertz

I

Gompertz

II

Linear

logistic

Box–Cox FLOG TONIC

Observations number 12 12 12 12 12 12 12 12

R-squared 0.96860 0.93354 0.99897 0.99898 0.99880 0.99949 0.99961 0.99954

Ra-squared 0.96075 0.91692 0.99874 0.99874 0.99854 0.99930 0.99938 0.99937

S.E. of estimation 0.01250 0.01821 0.01497 0.01497 0.01616 0.00118 0.01050 0.01058

Durbin–Watson statistic 1.95310 1.31113 0.75716 0.75717 1.14351 1.15879 1.27577 1.28122

MSE 0.00019 0.00086 0.00017 0.00017 0.00020 0.00008 0.00006 0.00007

MAE 0.00782 0.01241 0.01048 0.01048 0.01248 0.00818 0.00714 0.00775

MAPE 11.34587 19.00415 21.55872 21.55872 10.43377 13.47939 11.44783 11.41811

ME 0.00010 �0.00030 0.00482 0.00482 �0.00178 0.00205 0.00172 0.00163

MPE 0.21159 �12.78231 19.85078 19.85078 �4.30251 11.05834 9.30914 9.04396

Parameter estimation

m 1.17 m 1.12 S 1.23 S 1.23 S 1.11 S 1.18 S 1.26 S 1.16

p 0.001 p 0.0087 a �2.575 a 13.136 a �5.023 a �8.105 a �6.792 a �2.738

q 0.626 q 0.6528 b 0.396 b 0.396 b 0.702 b 2.770 b 1.296 b 0.525

m 0.291 m �0.043 c 2.340

k �0.134
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more accurate estimations and forecasts of the observed process. Moreover, even if the very same innovation
is introduced in different geographical areas, it is quite possible that one model will not be able to describe
corresponding diffusion processes, and that a different model may be more appropriate to describe diffusion
in each case.

The estimation results1 for each model over the whole dataset are depicted graphically in Fig. 3, and the
corresponding numerical results are presented in Table 2, which reports estimation of the parameters along
with the calculated values of the statistical measures. The corresponding discussion involving the results is
presented in subsequent sections. The statistics used for the description of the results is the mean absolute
percentage error (MAPE) (Table 3).

Another way of demonstrating the models’ diffusion estimation ability is presented in Fig. 4, where the
errors of estimation are plotted against time. The term ‘‘error’’ is defined in this context as the difference
1Evaluation of the models performance was based on Datafit v. 7.1 software package (http://www.curvefitting.com). The rest of the

analysis was conducted by using Microsoft Excel.

http://www.curvefitting.com
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between the observed value and the estimated value for the model considered each time and for the years from
1994 to 2005. The estimation errors of the superior models converge around the horizontal axis, whereas the
poorer models provide errors that are spread around the axis.

Regarding the Bass model, its parameters are estimated by nonlinear least squares (NLS) regression, for
both the discrete analog and the general formulation of the model. It can be concluded that the Bass model is
reliable enough to fit the actual data and therefore to forecast telecommunications penetration. However,
observably larger values of statistical errors are recorded, suggesting its nonoptimality for forecasting in
comparison with other models. Despite this fact, the construction of the Bass model itself provides the ability
to derive some quite useful information for the structure of the referenced market. More precisely, the
parameters p and q, as these were defined earlier in the description of the Bass model, represent the forces of
innovative and imitative behavior that operate in each market. Thus, the obtained values provide an
Table 3

Mean absolute percentage errors (MAPE) for withheld periods (TD: training data, HB: withheld sample, take-off: take-off sample) and

for the entire dataset (total)

Hold back samples

(HB) MAPEs

Bass

discrete

Bass

general

Gompertz

I

Gompertz

II

Linear

logistic

Box–Cox FLOG TONIC

HB 1 year

TD 57.16 56.96 22.96 22.96 9.48 12.87 11.44 11.09

HS 28.12 1.29 1.11 1.11 3.80 1.70 1.21 1.69

Take-off 50.16 43.84 2.37 2.37 3.82 2.22 1.92 2.06

Total 54.74 52.32 21.14 21.14 9.00 11.94 10.58 10.30

HB 2 years

TD 93.96 55.56 25.04 25.04 8.11 8.48 8.73 8.56

HS 3.57 4.14 0.92 0.92 6.35 5.51 4.88 5.11

Take-off 34.41 45.89 2.64 2.64 2.38 1.99 1.74 1.74

Total 78.90 46.99 21.02 21.02 7.81 7.98 8.09 7.98

HB 3 years

TD 50.51 53.12 25.08 25.08 8.41 8.25 8.18 8.41

HS 29.92 7.08 5.27 5.27 7.03 7.82 7.88 7.22

Take-off 47.43 47.98 2.28 2.28 1.59 1.72 1.72 1.63

Total 45.36 41.61 20.13 20.13 8.06 8.15 8.11 8.12
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Fig. 4. Model evaluation results—residuals plots (observed value–fitted value) against time.
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estimation of these forces—extremely valuable information to decision and policy makers. The time that the
adoption process is expected to be self-sustaining can be accordingly estimated, as it corresponds to the first
time period in which the total number of adopters exceeds the ratio of p to q (Phillips, 2007). At this time,
confidence in sustainability is high, because the majority of new adopters are imitators. In the case of Greece,
the estimated values (pE0.001 and qE0.63) indicate that the market consists mainly of imitators. This
information, especially if combined with estimation results from other high-technology products, can provide
useful directions for the construction of a firm’s strategic plans, which are usually related to present as much as
future required investments.

As far as the Gompertz models are concerned, their parameters have also been estimated using NLS. The
growth process estimated by the Gompertz models fits the actual data quite adequately, in terms of statistical
measures of precision. Although the model fits the initial introduction stage of the innovation less adequately,
it performs well after the year 1997.

The estimates based on the logistic family models are also reported in Table 2. The fit is quite acceptable and
the calculated MAPE values are roughly of the same level. However, there is an observable divergence in the
values of S (saturation level) estimated by each model, although the models all report estimated values
exceeding unity.

Furthermore, all the models are related to acceptable values calculated for the coefficient of multiple
determination (R-squared), as well as for the adjusted coefficient of multiple determination (Ra-squared).
Equally acceptable are the values calculated for the rest of the statistical errors.

5. Conclusions

It can be concluded that existing models are quite capable of describing the diffusion process of mobile
phone subscriptions. All models forecast a saturation level greater than 100%, which can be easily explained
by considering multiple, often personal and business subscriptions, or prepaid and postpaid ones. Moreover,
as market competition increases, mobile operators propose attractive offers resulting in higher churn effects,
which is an important factor in market analysis and forecasting.

The different values of estimations for the market potential or the saturation level spanning 111–126%
provide information regarding the lower and upper bounds to which the diffusion process is expected to
move—clearly important intelligence for market operators.

For policy purposes, a ranking of the models, based on their data approximation precision over the
particular dataset, can be extracted from the analysis.

It can be observed that the calculated statistical errors for the Bass models are quite high, indicating that the
models are inappropriate for this particular dataset for accurate diffusion estimation and forecasting. The
Gompertz models seem to fail in successfully estimating early years’ recorded data, as they reveal high values
of absolute errors. Nevertheless, they provide quite accurate estimations for the following years, as depicted in
the corresponding values of take-off MAPE (TO). Moreover, the values of MAPE of the Gompertz models
over the withheld period (HB) are the smallest, as compared to the MAPEs of the rest of the participating
models. Logistic family models converge on the actual data quite reliably as well, having low values of
calculated errors. However, since one of the main concerns includes forecasting the mobile diffusion process
over the next few years, the Gompertz model is considered as the most appropriate, based on the lowest values
of MAPE over the data corresponding to the withheld period (HB) as well as the data that correspond to the
take-off dataset (TO). Forecasting results are presented and contrasted in Fig. 3.

From the policy point of view, the analysis of different diffusion models with respect to mobile telephony in
Greece demonstrates that the saturation level of the market was already met in year 2003. Therefore, the
market is now probably mature enough to welcome a new technology such as the next generations of mobile
telephony. With this in mind, two operators, namely Vodafone and Wind (ex. TIM Hellas), are planning to
offer HSDPA (High Speed Downlink Packet Access) services, aiming to maintain high ARPU rates and
increase their market shares. Also, given the immaturity of the fixed broadband market, mobile operators plan
to move towards triple- and/or quadruple-play services in order to increase their revenues and profit margins.

Although the introduction of GSM was somewhat delayed in Greece (1994) and an oligopoly market is still
operating, high diffusion speeds have been achieved and saturation levels have been reached. Reasons for this
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include the influential interaction between the groups of adopters and nonadopters, as expressed by a ‘‘word-
of-mouth’’ process (Bass, 1969), as well as the number of competitors, especially in the infancy period of
mobile telephony, which is related to an intensive and persuasive marketing strategy for attracting users. Both
of these assertions are adequately depicted. Indeed, during 1998, the recorded number of mobile subscribers
more than doubled, as compared to the previous year’s subscriptions. Although there has been a continuously
incremental process in adoption since the introduction of mobile technology, the actual take-off was recorded
between the years 1997 and 1998. This chronologically coincides with the entrance into the market of the
incumbent fixed-line operator, OTE. On the other hand, the entry of Q-Telecom, as a fourth entrant in 2002,
in a rather saturated market, highlighted the limited market potential of Greek mobile market.

From the standpoint of economics, telecommunications constitute a typical example of a network product.
Consequently, a user’s utility increases as the number of adopters increases too. In accordance with this
concept, influential interaction among adopters and nonadopters, as realized by a word-of-mouth process,
further accelerates the adoption rate. This is captured by the high calculated values of the q parameters of both
Bass models (at about 0.6). Moreover and in terms of competition, evidence from Greece accords with
Geroski (2000) who states that ‘‘too much competition slows diffusion’’. Taking this observation into
consideration, it can be demonstrated that the Greek market followed an interesting pathway regarding the
introduction and growth of mobile telephony. The inception of market structure took the form of a duopoly
quickly transforming into oligopoly. However, it has never attained the state of a fully competitive market
characterized by ‘‘too much competition’’ and consequently ‘‘slow diffusion’’.

Because ‘‘diffusion is as much a process by which usage spreads and this means that there is probably not a
hard and fast distinction to be drawn between technology policies designed to generate new technology and
those designed to increase the usage of existing technologies’’ (Geroski, 2000), the forecasts presented in this
paper are useful for telecom companies, regulation bodies and researchers, as they concern the introductory
period of new technologies, while highlighting movements towards increasing usage of existing ones.

As has become evident, the total number of users is likely to increase over time; thus, the critical factor for
the adoption of new technology (like 3G and 4G) is the initial users, the innovators, who seem to influence the
speed and the potential size of the diffusion.

It should not be ignored that a successful diffusion process depends not only on the innovation itself but
also on a properly defined regulatory framework. Without doubt, the innovation itself is of major importance;
however, the development of an appropriate regulatory framework should not be underestimated, as
technological development by itself does not suffice for an innovation to merit a successful diffusion process.
This is the main mission of national regulatory authorities, whose responsibilities include promotion of the
development of new technologies, and supervision of proper operation of the relevant market, in terms of
market competition and protection of the interests of the end-users.

Some aspects for further research include the examination of the diffusion patterns between prepaid and
postpaid subscriptions as historical evidence reveals that users’ choices often vary. Another topic of interest
remains the allocation of usage between mobile phones and fixed telephony in the context of complementarity
or substitutability of mobile and fixed telephony.

A final but substantially important factor, related to the diffusion process of either newly introduced
innovations or existing ones, is the pricing policy adopted by the providers. Regarding the case studied,
of the Greek mobile telephony market, during the last 3–4 years, prices in mobile services faced a reduction at
about 54%. Future trends and the situation in Greece are expected to be in accordance with the rest of
Europe, where mobile telephony has manifested an increase in diffusion and usage, while fixed line remains
constant.
Appendix. Durbin–Watson statistic

Durbin–Watson (DW) statistic is a measure of autocorrelation or serial correlation (nonrandomness) in the
residuals of a least squares regression analysis. As the autocorrelation increases, the DW statistic decreases.
The larger the correlation is, the less reliable the results of the regression analysis.
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The null hypothesis that there is no correlation between the successive residuals is evaluated by

DW ¼

Pn
i¼2ðei � ei�1Þ

2

Pn
i¼1e

2
i

,

where ei is the residual corresponding to the observation i and ei�1 is the residual of the preceding observation.
The value of the DW statistic ranges from 0 to 4. A value of 2 indicates no autocorrelation, 0 indicates

positive autocorrelation, and 4 indicates negative autocorrelation. As a rule of thumb, DW between 1.5 and
2.5 is inferred to indicate independence of observations.
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