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Abstract — Cloud computing is a growing industry and 

it has already dominated many IT markets segments. 

Cloud providers offer numerous equivalent IaaS services 

aiming to fulfill clients’ requirements. In addition, cloud 

clients need to choose solutions that minimize costs without 

compromising efficiency though. However, not only the 

confusion due to the large variety of cloud services but also 

the uncertainty about the efficiency specifications that 

their cloud services should have, can make cloud 

computing services selection a difficult task for the users. 

Into this context, this paper presents an approach to a 

multi-attribute decision-making problem that focuses on 

the calculation of efficiency of IaaS cloud services as a 

measurable driver for both clients and providers. A DEA 

input-oriented model is described, which estimates 

efficiency of cloud services based on functional and non-

functional parameters. Furthermore, the contribution of 

functional and non-functional features to the overall 

performance is examined. This innovative model urges 

providers to optimize the efficiency of their services aiming 

to increase their market share and, at the same time, 

assists clients in choosing a cost-effective cloud solution. 

 
Index Terms— Cloud Services, Data Envelopment Analysis, 

Efficiency, Functional Parameters, Non-Functional Parameters.  

 

I. INTRODUCTION 

 Cloud computing is an industry in exponential growth and 

it is anticipated to continue developing at a robust rate for the 

following years. Infrastructure as a Service (IaaS), a 

foundational cloud delivery model, provides flexibility and 

computing resources in the form of virtualized operating 

systems, workload management software, hardware, 
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networking and storage services, promoting at the same time 

productivity, growth and competition among companies [1]. 

Therefore, an increasing number of companies are switching 

to these facilities, instead of expanding their own datacenters. 

Despite the fact that IaaS is not a new technology but rather a 

different way of contracting for services and technologies, it 

can be complex, fragmented and confusing for potential 

clients. Cloud users usually choose IaaS services that mainly 

focus on fulfilling necessary functional requirements and 

minimizing their cost, often ignoring the efficiency, or 

performance-price ratio. However, there are many non-

functional factors influencing the service quality of cloud 

services, which need to be somehow quantified and taken 

under users’ consideration. 

Cloud IaaS performance depicts the cost-effectiveness of 

cloud services assisting clients to choose not only the optimal 

but also the most cost-effective cloud solution. It evaluates 

numerous equivalent cloud services from different providers 

in an objective perspective [2]. This paper proposes a Data 

Envelopment Analysis (DEA) in order to address the decision-

making problem for cloud services. This non-parametric 

method first establishes a DEA-oriented model to empirically 

estimate the relative efficiency between cloud services and 

then selects several instances from a wide range of service 

providers to train the model, aiming to find the most efficient 

or the frontier among them [3-4]. Functional and non-

functional requirements, together with price, are taken into 

account and describe each cloud bundle of the sample data. 

Functional aspects define the straightforward cloud services, 

while non-functional parameters refer to the anticipated 

quality of services and indicate the constraints under which 

services should operate.  

Into the context of the present work, an innovative approach 

is presented, aiming to estimate the efficiency of cloud IaaS 

services, emphasizing on the same time on the importance of 

non-functional attributes to the overall cloud performance. 

This is achieved by the use of categorical variables to quantify 

especially the non-parametric aspects. The proposed DEA-

oriented model can be a powerful tool for cloud clients and 

providers, since it can guide clients through the cloud 

selection process. It can also prompt providers to enrich and 

upgrade their services aiming to performance improvement. 

This study intends to fill an existing gap in the literature 

regarding the impact of non-functional parameters to relative 

efficiency. The results also indicate that the methodology 

allows for obtaining a realistic price target the service should 
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have, in order to be efficient. This is a very useful metric for 

both users and providers, highlighting the fact that price, 

despite the fact that it is a quantitative and explicit variable, it 

is not a decisive indicator for cloud selection.  

The rest of the paper is organized as follows: Section II 

presents the related work, while Section III introduces a 

general description of DEA technique, emphasizing on the 

incorporation of non-functional parameters. Section IV 

develops the proposed methodology and section V presents 

the evaluation results. Finally, Section IV concludes the paper 

and suggests future work. 

II. RELATED WORK 

There are several proposed schemes that discuss the cloud 

service performance, as well as approaches that combine cloud 

services selection based on performance and employing the 

DEA methodology. To this end, the body of the relevant 

literature includes studies that address cloud services selection 

based on performance and studies that discuss cloud services 

selection based on DEA.  

Brebner and Liu [1] model the performance of cloud 

services aiming to predict the resource requirements in terms 

of cost and performance. A suite of cloud testing applications 

on a variety of cloud infrastructures such as Google App 

Engine, Amazon EC2 and Microsoft Azure has been used. 

This paper confirms that cloud performance is an indicator 

that varies accordingly to the type, the cost and constrains of 

the cloud applications.  

Ostermann and Iosup [2] introduce a study about the 

performance analysis of cloud computing services for Many-

Tasks Scientific Computing. They present an empirical 

evaluation of the performance of four cloud computing 

providers including Amazon EC2, the leading cloud industry. 

Using simulation, they compare performance and cost models 

of each cloud provider. This study concludes that current 

cloud services are insufficient for scientific computing; 

however current cloud packages are considered to be an 

essential solution for the scientific community when cloud 

resources are instantly needed.   

Furthermore Kandula and Zhang [3] examine a 

comprehensive comparison of four public cloud providers 

based on performance. The performance is described by 

metrics that characterize performance of cloud providers. This 

analysis though introduces that cloud performance is not the 

only concern of cloud users in order to choose the most 

appropriate cloud service, but also other features such as 

availability and data redundancy interest them.  

Park and Jeong [4] propose a QoS model that advises cloud 

users on the selection of the optimal SaaS ERP package. The 

proposed model fulfills six criteria; Functionality, Usability, 

Business, Reliability, Maintainability, Efficiency. Based on 

this QoS model, they also propose a Multi Criteria Decision 

Making (MCDM) that returns the SaaS ERP which meets the 

above features and the user requirements. The expert group 

approach is adopted in order to get opinions about the quality 

features of a SaaS ERP service, using Social Network Group. 

Moreover Zheng and Wang [5], introduce a personalized 

QoS ranking prediction framework for cloud services, named 

CloudRank. This model predicts the ranking of cloud services 

based on nonfunctional performance and evaluates the quality 

of cloud services for each individual cloud user. Therefore, the 

past usage experiences of cloud users are used, in order to 

predict the QoS rankings directly.  

Kumar and Saurabh [6] rank the cloud services based on 

performance, including price as well. Their model helps 

customers to choose the cloud solution that fulfills their 

requirement, but it also helps cloud providers to improve their 

services. For the performance calculation Data Envelopment 

Model (DEA), Analytic Hierarchy Process (AHP) and 

Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) model have been used.  

Souza and Fernandez [7] measure the performance of cloud 

computing platforms by considering the importance of each 

resource in a specific application and defining the weight for 

each resource. Two benchmark suites were used for the 

evaluation, High-Performance Computing Challenge (HPCC) 

and Phoronix Test Suite (PTS). 

In addition to the above contributions, a non-parametric 

method that evaluates the relative efficiency of cloud services 

based on Data Envelopment Analysis is proposed by Xu and 

Wang [8]. It ranks cloud services into different efficiency 

levels and indicates solutions towards performance 

improvement. The evaluation of the performance was based 

on a group of IaaS services. Although the specific model is 

similar to the proposed model of the current paper, these two 

papers are differentiated studies. Xu and Wang describe their 

cloud services based on functional requirements (CPU, 

Memory and Storage), whereas the cloud services of the 

present study are specified by functional and non-functional 

requirements and are categorized into three groups. 

Furthermore, in the same study [8] DEA is applied on a 

limited dataset of cloud bundles, whereas the proposed method 

implements DEA strategy in an extended dataset of cloud 

instances 

Following the literature review it becomes obvious that the 

DEA methodology has been applied to cloud IaaS services, 

with the limitation that these services are described only by 

functional parameters such as CPU, storage and memory. 

However, non-functional factors which describe system 

attributes such as security, reliability, performance are as 

critical as the functional features, since they define quality and 

constraints of cloud services. Cloud vendors that provide 

options described by non-functional parameters enhance their 

cloud services and become more competitive, efficient and 

profitable.  

The proposed DEA-oriented model estimates the relative 

efficiency of cloud services and additionally focuses on the 

impact of non-functional parameters on efficiency. This 

approach aims to fill an existing gap in literature about the 

application of DEA, taking non-functional parameters into 

consideration and studying their key role on performance.  

III. DATA ENVELOPMENT ANALYSIS (DEA) 

A. General Description 

Data Envelopment Analysis (DEA) is a performance 

evaluation methodology and a benchmarking technique and 
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has been widely studied, used and analyzed gaining increasing 

popularity among researchers. The method was originally 

introduced by Charnes, Cooper and Rhodes [9], in 1978, as a 

mathematical programming model to evaluate non-profit and 

public sector organizations. The method has been proven 

significantly useful to locate ways for assessing the 

comparative efficiencies of decision-making units (DMUs; 

e.g. banks, schools, hospitals, factories, etc.), especially when 

the presence of multiple inputs and outputs makes comparison 

with other techniques difficult [6, 10, 11]. 

The usual measure of efficiency is simply defined as the 

ratio of output to input: the more the output per unit of input 

achieved, the greater the relative efficiency is. This kind of 

measure is often inadequate in more complex situations, such 

as the cloud computing services selection. This is due to the 

existence of multiple outputs and inputs related to different 

resources, activities and environmental factors and due to the 

numerous DMUs being evaluated which are only relatively 

homogeneous and cannot be easily analyzed [10]. This is the 

reason why DEA is a really powerful tool able to evaluate the 

efficiency of a number of producers or units and allows 

efficiency to be measured without having to specify either the 

form of the production function or the weights for the different 

inputs and outputs chosen [11]. As a linear based multi-criteria 

decision making methodology, it compares each unit with only 

the “best” units, identifying not only the most efficient units or 

best practice units but also the inefficient ones, in which real 

efficiency improvements are possible. Finally, the DEA 

method defines a non-parametric best practice frontier that can 

be used as a reference for efficiency measures and calculates 

the numerical coefficients given to each DMU, estimating its 

relative efficiency [10, 12]. 

A common measure for relative efficiency of a many input–

many output DMU is the following: 

 

inputsofsumweighted

outputsofsumweighted
Efficiency  , (1) 

 

which, after introducing the usual notation for a DMU with m 

outputs and n inputs, can be written as: 
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where ur is the weight given to output r, vi is the weight given 

to input i, yrj is the amount of output r from DMU j and xij is 

the amount of input i in DMU j.  

According to the above equations, the measurement of the 

relative efficiency of a DMU, with multiple possibly inputs 

and outputs, is achieved by constructing a hypothetical 

efficient unit, as a weighted average of efficient units, to act as 

a comparator for any other unit [13]. Towards this direction, 

the application of a common set of weights across all DMUs is 

not a simple action. In some cases it is considered to be very 

difficult to value the inputs and outputs of a DMU, while at 

the same time units may value their inputs and outputs in a 

different way and therefore adopt different weights. Thus, the 

assumption of setting universally valid weights is 

unsatisfactory and DEA gives a solution to this problem by 

determining a set of weights in the most favorable light for 

each DMU in comparison to other units. Efficiency (h0) of a 

specific target unit (j0) can be obtained as a solution to the 

following problem [10, 11, 13]: 
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ur, vi ≥ ε,   r = 1, 2, …, m     i = 1, 2, …, n    (5) 

 

 

The variables of the above problem are the weights (u, v) 

which are the most favorable to unit j0, as compared to the 

other k-1 DMUs, meaning that DEA determines the weights to 

calculate the efficiency (h0) based on assumption that more of 

outputs and less of inputs are desirable, so that DMU j0 looks 

as efficient as possible. Each unit is allowed to adopt a set of 

weights in the most favorable light in comparison to the other 

units. The weights (u, v) are bounded to be greater than or 

equal to some small positive arbitrary quantity ε in order to 

avoid any input or output being totally ignored. The relative 

efficiency of each DMU is subject to the constraint that no 

unit can be more than 100% efficient when the same weights 

are applied to each DMU, meaning that the efficiency is 

bounded to be lower than or equal to 1 [9]. 

Model M1 is fractional linear programming, and it first 

needs to be converted into a linear form so that the methods of 

linear programming can be applied. The linearization process 

is relatively straightforward and the linear version of the 

constraints of M1 is shown in the following model M2 [9, 10]: 
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As far as the maximization of a fraction is concerned, the 

most important point is the relative magnitude of the 

numerator and denominator and not their individual values. In 

other terms, there would be the same result if the denominator 

(Μ2) 

 (M1) 
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is set equal to a constant and the numerator is maximized. The 

relative efficiency of the target unit can be obtained by solving 

model M2. The efficiencies of the entire set of DMUs can be 

measured by finding the solution to the linear program 

focusing on each unit in turn [13]. 

B. Different Models 

DEA accords name “envelopment” because of the way it 

envelops the observations in order to identify “efficiency 

frontier” that is used to evaluate relative performance of all 

peer units [6]. There are two types of DEA models. The first is 

called multiplier model – the primal model, which was mainly 

described in the previous section. The other is called 

envelopment model – the dual model. The dual model is 

constructed by assigning a variable (dual variable) to each 

constraint of equations (6) to (9) in the primal model (model 

M2) and then formulating a model on these variables, as 

described in detail in [13, 14]. This procedure results in the 

following model M3, where h0* is the efficiency score of a 

target unit (j0) that would result in the optimum (calculated, 

e.g., by splitting the sample): 

 

0

*

0 hmin =h                                                   (10) 
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The solution to either the original LP (the primal) or the 

partner (the dual) provides the same information about the 

problem being modelled. The solution to the dual model is 

seeking to minimize the efficiency with values of λj  to form a 

composite unit with inputs 
j

ijxjλ , i=1, 2, … n and outputs 


j

rjyjλ , r=1 ,2 ,… ,m more efficient than unit j0  which is 

being evaluated. More specifically, the weighted sum of the 

inputs of the other DMUs should be less than or equal to the 

inputs of unit j0 and the weighted sum of the outputs of the 

other DMUs should be greater than or equal to unit j0. The 

weights are the λ values. All the other DMUs with non-zero λ 

values are the units against which each inefficient DMU was 

found to be most directly inefficient [10, 13]. 

In addition, there are two approaches to apply the DEA 

model. The input-oriented approach aims to increase the 

efficiency of a DMU by minimizing inputs while keeping 

outputs fixed at the same level. On the other hand, the output-

oriented DEA model is used when outputs are maximized 

while keeping input level as constant as possible [6]. 

C.  Incorporation of Categorical Variables 

In a DEA model input and output variables are used as 

essentially quantitative but sometimes it is necessary for the 

contribution of non-quantitative variables, such as ordinal or 

nominal variables, to be evaluated. For example, one might 

like to compare institutions of the same type, such as public or 

private schools with different qualitative features. This is 

accomplished by introducing dummy/categorical variables 

containing numbers for order or identifiers for names. In the 

context of DEA method, categorical or control variables refer 

not only to ordered variables (i.e. of the type “low”, 

“medium”, “high”) but also to variables that take on only a 

finite number of values, are inputs or outputs of certain types 

and cannot be represented by continuous variables [15-17]. 

DEA categorical variables function as further constraints on 

making comparisons between subsets of comparable DMUs. 

There must be some a priori information about the direction of 

the disadvantage between different categories, so that 

comparisons for DMUs in the same category or in a more 

unfavorable/lower category are possible. If categories cannot 

be comparable, a separate DEA should be performed for each 

category [18]. 

Even though methods of incorporating categorical variables 

to a DEA model have been introduced before, they have rarely 

been applied from researchers. Splitting the data set of a 

problem according to the distinct values of the categorical 

variables is a solution proposed in [19]. However, it is 

considered to be really tedious and slow for a model with 

more than one categorical variables, due to the fact that a 

separate DEA run is carried out for each distinct combination 

of categorical variables. To this end, Banker and Morey [16] 

showed that splitting of data into subsamples can be avoided 

by defining descriptor binary variables for each DMU that can 

replace categorical variables. However, their approach cannot 

be solved using standard DEA software. This problem is faced 

from a simple and straightforward alternative quite similar to 

the Banker and Morey method which is based on indicator 

variables [17]. Löber and Staat try to incorporate categorical 

non-discretionary variables in DEA models regardless of the 

returns to scale assumption. Splitting the data is not required 

and their method can be solved by any standard DEA 

Software and can be applied to discretionary categorical 

variables and non-hierarchical categoricals as even in the 

absence of numerical data [17].  

For an input-oriented model with non-discretionary 

inputs/indicators, each input indicator must be greater than 0 

for the DMU to be excluded from reference sets of other 

DMUs and equal to 0 for the DMU to be evaluated. These 

indicators must lead to constraints, which are fully redundant 

once inadmissible peers have been removed from the data set. 

Categorical variables must not change the efficiency score for 

any DMU, for which the referent point in a model without the 

additional constraint had already been composed of peers from 

categories not better than its own [17, 19]. The following LP 

represents a general solution for an input-oriented model with 

P inputs x and Q outputs y for N DMUs indexed by n. The 

(Μ3) 
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model is based on indicator variables and is mathematically 

explained in detail in [17], where it finally ends up in the 

following Model M4. The true efficiency score θ for a DMU 

(x0, y0) with R categorical variables with Cr categories is: 

 

θmin                                                               (15) 
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To exclude DMUs in a better category as peers in referent 

points for DMUs in a lower category, indicator irn must be 

equal to xpn, where xp can be either one of the P inputs (clearly 

redundant, whichever one is chosen) for all DMUs in a lower 

category and must be equal to 0 for all other DMUs. 

IV. METHODOLOGY FOR CLOUD COMPUTING SERVICES 

SELECTION 

A. Data Collection 

The proposed method is based on IaaS cloud computing, the 

most straightforward cloud service. Data collection was based 

on Cloudorado (http://www.cloudorado.com) [20], a cloud 

computing comparison service that provides pricing bundles 

for IaaS providers. It accepts specifications on each customer's 

needs such as memory, storage, processor computing 

capabilities and operating systems and returns a comparison of 

different cloud services based on price. The platform also 

allows applying filters based on non-functional requirements 

such as security, reliability and cloud management features. 

According to Cloudorado’s founder, Marcin Okraszewski 

[21], the task of comparing manually all the providers is very 

hard for the companies and it can take days or even weeks. 

This is the reason why Cloudorado aims to keep up to date, so 

that businesses can be able to make even better decisions and 

finally be successful. 

The collected IaaS cloud bundles were categorized into three 

groups:  

 Computation Optimized Instances: Instances for compute-

bound applications that feature high performance 

processors. 

 Memory Optimized Instances: Instances for memory-

intensive applications 

 Storage Optimized Instances: Instances that are designed 

for applications that require high sequential read and write 

access to very large data sets on local storage [22]. 

The classification of cloud instances in the above three 

groups is introduced by Amazon EC2 [22, 23]. Amazon is the 

leading provider of cloud infrastructure services, as it 

maintains a significant share in the cloud market [24]. 

Therefore, the categorization Amazon follows is considered to 

be the most appropriate pattern.  

The total number of the collected price bundles is 806 out 

of 23 providers. The number of compute, memory and storage 

optimized instances is 401, 205, 200 respectively. 

As mentioned above, the price instances of DEA method 

are derived from 23 providers, shown in TABLE I. The 

collection of cloud bundles was based on criteria that were not 

fulfilled by all cloud providers, thus the number of the 

collected price bundles of each provider differs.  
 

TABLE I  

CLOUD IAAS PROVIDERS 

Providers 

Microsoft azure Stratogen 

Amazon Eapps 

Google Data dimension 

Cloudsigma Cloudware 

Atlantic.net Zippycloud 

M5 Exoscale 

Elastichosts Vps.net 

Bitrefinery1 Dreamhost 

Storm Zettagrid 

Rackspace Cloudsolutions 

E24cloud.com Gigenet 

Joynet  

 

Cloudorado also includes non-functional features such as: 

 Security compliance and certifications (SSAE 16, HIPPA, 

FISMA, PCI DSS, etc.), 

 Cloud management features 

 Support levels 

 Service Level Agreement (SLA) 

 Elasticity of the offers 

 Level of reliability 

 Various technical details regarding networking, servers 

 Used technologies 

 Security design 

 Licenses 

 Billing details 

 Support by third-party tools [21]. 

The client can easily determine which cloud provider best 

fits their organization's specific needs in terms of cost and 

performance. 

The cloud instances are determined by functional 

requirements (CPU, Memory and Storage Capacity) shown in 

TABLE II, TABLE III and TABLE IV, respectively, together 

with the considered values. 

 

 

 

(Μ4) 
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TABLE II  

COMPUTE OPTIMIZED INSTANCES 

vCPU Mem(GB) Storage(GB) 

1 2 50 

2 4 100 

4 8 100 

4 8 200 

8 16 200 

8 16 500 

16 32 200 

16 32 500 

16 32 1000 

32 64 500 

32 64 1000 

32 64 2000 

 

TABLE III 

MEMORY OPTIMIZED INSTANCES 

vCPU Mem(GB) Storage(GB) 

2 8 50 

2 16 50 

2 16 100 

4 32 100 

8 64 200 

16 128 500 

32 256 1000 

 

TABLE IV 

STORAGE OPTIMIZED INSTANCES 

vCPU Mem(GB) Storage(GB) 

2 16 500 

2 16 1000 

4 32 1000 

4 32 2000 

8 64 2000 

8 64 5000 

16 128 5000 

16 128 10000 

32 256 10000 

 

B. Categorical Variables Description 

This paper proposes an alternative methodology for the 

selection of IaaS cloud computing services by applying DEA 

to a multi-attribute decision-making problem, where each 

performance may depend on a number of functional and non-

functional factors. Such a selection is difficult, due to the 

many qualitative features that are continuously being offered 

together with IaaS bundles. In this way, cloud bundles of 

services can be selected, not just according to the price but 

also based on the importance that each non-functional 

requirement has for the users [4, 21, 25]. 

This section focuses mainly on the description of non-

functional parameters, which are treated as categorical 

variables for the input-oriented DEA model used in the 

context of this paper [17]. There are non-functional aspects 

which constitute some of the main promises of cloud 

computing, such as scalability, elasticity, service levels, and 

others that are the most important user concerns such as 

security, availability, ease of migration, true reliability levels, 

and usability [26, 27]. Based on these features, the diverse 

qualitative attributes of cloud bundles are grouped into 

corresponding categories, so that selection of cloud providers 

and services could be easier. A functional requirement about 

the supported operating system is included in this section as 

well, since it is considered to be another categorical variable 

for the DEA model of this study [17, 21]. 

According to the comparison of several cloud providers 

given by Cloudorado [20], the IaaS cloud services selection 

problem consists of 13 non-functional requirements and a 

functional one, grouped into 4 categories which are described 

below together with the considered values as shown in 

TABLE V:  

1) Security 

 Encrypted Storage: If the storage volume is encrypted. 

 Safe Harbor / EU Directive 95/46/EC: If the provider is 

compliant with EU Directive 95/46/EC on the 

protection of personal data. Regarding US companies, 

the equivalent is the Safe Harbor principles.  

2) Availability/ Reliability 

 Service Level Agreement (SLA) Level: The uptime 

SLA level expressed in percentage points of 

availability. A 5-level scale measuring from 99.90% 

(Level 1) until 100% (Level 5) of availability is used. 

 Backup Storage: If storage-based backup is available or 

not. 

 Free Support: If support cost is included in the price of 

the basic plan of each provider; any other additional 

support beyond the basic plan is paid. 

3) Elasticity/ Performance 

 Burstable CPU: The CPU allocation can be either fixed 

or can burst to a higher capacity if current conditions 

allow it. The burstable CPU is favorable for the 

selection of a cloud bundle of services, since it allows 

gaining extra CPU power at no additional cost, whereas 

with fixed CPU allocation there is no hope for a free 

CPU in case of a spike, but the CPU power is known, 

almost like with a dedicated server. 

 Auto-scaling: A 4-level scale is used. Level 1 refers to 

vertical auto-scaling, meaning when it is possible to 

scale up a server automatically, by adding more 

resources, such as disk space, RAM or processing 

units. Horizontal auto-scaling (Level 2) is about adding 

more servers, quickly and easily deploy new images 

based on existing virtual machines depending on the 

workload. It is possible that none of these 2 types of 

auto-scaling is supported (Level 0) and on the other 

hand both of them may be supported from a cloud 

provider (Level 3). It is favorable to have a horizontal 

auto-scaling, because it increases capacity of existing 

hardware by connecting multiple servers, whereas 

vertical auto-scaling restricts capacity extension to the 

capacity of the actual server [28].  



2168-7161 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2018.2850889, IEEE
Transactions on Cloud Computing

7 

TCC-2017-07-0149 

 

 Resource usage Monitoring: If there are integrated 

monitoring solutions (i.e. monitoring tools, alerts, 

indicators, etc.) being offered by cloud companies, so 

that users can monitor current resource utilization (i.e. 

CPU, RAM, disk, network etc.) in their cloud servers 

for no additional cost. This feature is needed for 

performance and capacity management, since often 

measurements from within the cloud server might not 

show the full image of resources usage. 

4) Usability/ Portability 

 Web Interface: If a web management interface is 

available or not. 

 API: If an API management is available for automating 

cloud servers and interacting with them or not. 

 One Account for All Locations: If there is one account 

and single interface to manage all different locations or 

a separate account for each location. 

 Image from Cloud Server: If a provider supports 

creating an image from an existing VM and then 

deploying it to other cloud servers.  

 Limited Free Trial: If cloud companies offer a free trial 

of their services for a limited period of time or for a 

certain amount of credit to be spent on cloud services, 

so that customers can use it to run tests. 

 Supported Operating System: There are two different 

supported operating systems (regardless of version) 

available as pre-configured images from cloud 

providers, Linux and Windows. The choice of Linux is 

considered to be favorable for a cloud computing 

bundle of services, as it has no additional cost for the 

bundle 

 
TABLE V 

FUNCTIONAL AND NON-FUNCTIONAL FEATURES OF CLOUD 

BUNDLES OF SERVICES TREATED AS DEA CATEGORICAL 

VARIABLES WITH CORRESPONDING VALUES 

CLOUD FEATURES 
NUMBER OF 

CATEGORIES 
VALUES 

SECURITY 

Encrypted Storage 2 YES/ NO 

Safe Harbor / EU 

Directive 95/46/EC 
2 YES/ NO 

AVAILABILITY/ RELIABILITY 

SLA Level 5 

1:99.90%, 2:99.95%, 

3:99.98%, 4:99.99%, 

5:100% 

Backup Storage 2 YES/ NO 

Free Support 2 YES/ NO 

ELASTICITY/ PERFORMANCE 

Burstable CPU 2 Burstable/ Fixed 

Auto-scaling 4 
0:None, 1:Vertical, 

2:Horizontal, 3:Both 

Resource usage 

Monitoring 
2 YES/ NO 

USABILITY/ PORTABILITY 

Web Interface 2 YES/ NO 

API 2 YES/ NO 

One Account for All 

Locations 
2 YES/ NO 

Image from Cloud 

Server 
2 YES/ NO 

Limited Free Trial 2 YES/ NO 

Supported Operating 

System 
2 LINUX/WINDOWS 

 

At present, different types of cloud services with diverse 

resources, qualitative requirements, functional features and 

prices are available in the market and from different cloud 

providers. The decision maker needs to identify and select the 

best suited bundle in order to achieve the desired output with 

minimum cost and maximum performance. 

C. DEA Evaluation 

Following the collection of data from cloud computing 

providers, the proposed methodology proceeds to calculate the 

relative efficiency rates, according to the DEA. DMUs, input 

and output parameters, as well as categorical variables are 

specified in an input-oriented DEA model, in the way as it was 

previously described. The essence of such a model in 

measuring the efficiency of cloud bundles lies in maximizing 

the efficiency rates by reducing inputs and keeping outputs at 

the current level. 
Cloud bundles are designated as Decision Making Units 

(DMUs). Each DMU is denoted by the provider’s name and a 

serial number. For example, and in the context of Memory 

Optimized Instances group, DMU ‘Google5’ describes the 

fifth cloud instance of Google, as derived from the 

Cloudorado platform. 

Price for an annual subscription is selected as an input 

parameter and is determined from Cloudorado. The price is a 

multidimensional factor because a provider who is considered 

to be the cheapest for one cloud instances group might be the 

most expensive for another one. The DEA model aims to 

increase the efficiency of each bundle by decreasing its price, 

while keeping outputs at the same level.  

Memory (GB), Storage capacity (GB) and Compute Power 

(CPU cores) that specify each cloud service are defined as the 

outputs of the model. There are a few more characteristics, 

such as Time On, Transfer In, Transfer Out, and the option 

that the CPUs, the RAM and the storage can be distributed 

among more than one physical server, participating in the 

price bundling of Cloudorado which are not considered as 

output parameters into this study. The Transfer In (the number 

of bytes received by server from the internet per month) does 

not contribute at a substantial level to the shaping of the 

pricing bundles, since many providers (i.e. Amazon, ecloud24 

etc.) charge customers only for the outgoing traffic and the 

others include it as a small amount in the total price of 

services. Furthermore, the Transfer Out (the number of bytes 

sent by server to Internet per month) does not seem to affect 

much pricing [29]. Therefore, with no loss of generality, the 

Transfer In attribute was considered to be at 1GB and the 
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Transfer Out at 10GB per month. As far as Time On is 

concerned, it was set at a level of 100% availability per day 

and the default offered value of non-distributed resources was 

also considered.  

In addition, all of the categorical variables described at the 

previous section are used as input indicators, since the DEA 

model of this paper is an input-oriented model with P inputs x 

and Q outputs y for n DMUs indexed by i. Therefore, each 

categorical variable, from R categoricals in total, has a number 

of categories Cr, as shown in Fig. 1. A corresponding number 

of binary dummies of the type proposed by Banker and Morey 

[16] is generated in this way, Cr-1. Hence, these variables are 

necessary and are designed to be multiplied with the price of 

each bundle that constitutes the input of the DEA model, 

thereby creating Cr-1 input indicators in order to achieve the 

desired result [17]. The proposed DEA model with all the 

input and output parameters is depicted in Fig. 1.  

 
Fig. 1 The proposed input-oriented DEA model with all input and output 

parameters. 

It should be also taken into account that all these additional 

variables lead to more constraints in the LP in the 

envelopment form in order to be able to use standard DEA 

code, as explained in section 3.3 of this paper. The use of 0-1 

dummy variables guarantees that only DMUs from the worst 

category are admissible as peers for DMUs from this category 

[17]. The objective function of the input-oriented model 

subject to the constraint on the indicators zri is given below, 

where θ* is the efficiency score that would result in the 

optimum: 

θmin θ*                                                      (20) 

 

subject to: 
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According to the previous categorization of cloud bundles, 

services have been characterized as compute, memory and 

storage oriented instances and the proposed model is applied 

over each group returning the most efficient services. In the 

case of compute optimized instances there are 401 DMUs, 205 

DMUs for the memory-oriented group and, finally, 200 DMUs 

correspond to the storage optimized instances.  

Evaluation was based on MaxDEA software [14], a user-

friendly and easy to use software with no limitation on the 

number of DMUs. MaxDEA returns the efficient cloud 

bundles, which get the most output from their inputs, as well 

as the rate of the inefficient cloud bundles. In addition, DEA 

calculates the slacks that are defined as the additional 

improvement needed for an inefficient DMU to become 

efficient, meaning its efficiency to become as large as possible 

and equal to the upper limit of 1 (or score 100%) [8]. At the 

proposed input-oriented CCR model the slack variables 

correspond to price reduction. Furthermore projection values, 

which are the efficient targets, are estimated for improving the 

performance of a service which does not lie into the efficient 

frontier [6]. 

A simple example of 3 different DMUs (cloud computing 

provider bundles) of the compute-oriented category with 5 

categorical variables using the DEA indicator approach is 

shown in TABLE VI.  

 
TABLE VI 

A SAMPLE OF DATASET WITH SOME CATEGORICAL VARIABLES 

USING THE DEA INDICATOR APPROACH 

Variable CloudSolutions5 Google2 e24cloud.com2 

CPU (cores) 2 2 1 

RAM (GB) 16 13 4 

Storage (GB) 200 100 140 

Price ($) 119 50 60 

Auto-scaling   None Horizontal Vertical 

dΑS(V) 0 1 1 

dΑS(H) 0 1 0 

dΑS(B) 0 0 0 

iAS(V) 0 50 60 

iAS(H) 0 50 0 

iAS(B) 0 0 0 

Resource usage 

monitoring 

NO YES YES 

(Μ5) 
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dRU(Y) 0 1 1 

iRU(Y) 0 50 60 

Web Interface YES YES YES 

dWEB(Y) 1 1 1 

iWEB(Y) 119 50 60 

Supported OS Linux Linux Linux 

dOS(W) 1 1 1 

iOS(W) 119 50 60 

Burstable CPU   Fixed Fixed Fixed 

dCPU(Y) 0 0 0 

iCPU(Y) 0 0 0 

 
 

The dummy variables that were created are labeled as da(b) 

and the input indicators as ia(b). The dummies were multiplied 

with the input of the monthly price, resulting in the indicators. 

DMUs “CloudSolutions5” and “Google2” were found to be 

efficient with their score equal to 100%, whereas the 

efficiency score of DMU “e24cloud.com2” was estimated to 

be 75.83% having “CloudSolutions5” in its reference set with 

λ equal to 0.152174. Both “CloudSolutions5” and “Google2” 

lie into the efficient frontier but “Google2” needs to reduce its 

price 14.50$ (final bundle price: 45.50$), in order to be 

efficient as well.  

V. RESULTS AND DISCUSSION 

A. Model Results Without Including Non-functional 

Parameters 

The proposed model is initially applied over a dataset of 

cloud bundles including only functional parameters. The 

implementation of DEA to a rather simple dataset, i.e. without 

including the non-functional factors, highlights the 

contribution of these parameters to the performance. In the 

group of IaaS services each cloud bundle is described by 

Compute Power (vCPUs), Memory (GB), Storage (GB) and 

Price ($). The only functional parameter, which participates as 

a categorical variable in the DEA model, is the supported 

operating system. Linux is chosen because it is freeware, thus 

the impact on the price of cloud instance is negligible. 

The efficient DMUs, whose efficiency score is estimated to 

100%, for the compute, memory and storage optimized groups 

are 3 out of 204 DMUs, 8 out of 103 DMUs and 5 out of 101 

DMUs respectively. Therefore, only 1.47% of compute cloud 

bundles are efficient, while 7.76% memory bundles and 4.95% 

storage bundles lie on the efficient frontier. Fig. 2 illustrates 

the results of the model. 

 

 
Fig. 2 Overall evaluation of compute, memory and storage DMUs 

In the “compute optimized” group only 3 out of 23 

providers offer efficient cloud bundles. Furthermore, in the 

memory and storage instances the providers that demonstrate 

efficient bundles are 4 out of 23 and 3 out of 23 respectively. 

TABLE VII, TABLE VIII and TABLE IX present the above 

results. 

 
TABLE VII 

NUMBER OF EFFICIENT COMPUTE INSTANCES PER CLOUD 

PROVIDER 

Providers Number of efficient cloud bundles 

Google 1 

DreamHost 1 

Vps.Net 1 

 
TABLE VIII 

NUMBER OF EFFICIENT MEMORY INSTANCES PER CLOUD 

PROVIDER 

Providers Number of efficient cloud bundles 

Microsoft Azure 1 

CloudSigma 3 

DreamHost 3 

Storm 1 

 
TABLE IX 

NUMBER OF EFFICIENT STORAGE INSTANCES PER CLOUD 

PROVIDER 

Providers Number of efficient cloud bundles 

Microsoft Azure 3 

Google 1 

DreamHost 1 

More specifically, regarding the most popular cloud 

services providers of the collected data with the largest 

markets share, Microsoft Azure, Google and Amazon, it is 

quite interesting to present their results in a separate table, as 

shown in TABLE X. According to these values, 16.67% 

memory bundles and 33.33% storage bundles of Microsoft 

Azure lie on the efficient frontier, meaning they are estimated 

to have a score of efficiency of 100%, while there are no 

efficient compute cloud bundles. Furthermore, the efficient 

DMUs of Google for the compute and storage optimized 

groups are 8.33% and 12.5% respectively, whereas all of the 
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memory optimized instances are considered to be inefficient. 

As far as it concerns Amazon, there are no efficient DMUs for 

none of the optimized instances. 

 
TABLE X 

NUMBER OF EFFICIENT BUNDLES FOR THE 3 MOST POPULAR 

CLOUD PROVIDERS PER CATEGORY OF INSTANCES 

 Number of efficient cloud bundles 

Providers Compute Opt Memory Opt Storage Opt 

Microsoft Azure 0 1 3 

Google 1 0 1 

Amazon 0 0 0 

 

 

Fig. 3 illustrates an overall ranking of the 23 providers 

together. It is obvious that the most efficient provider is 

Microsoft Azure while Vps.Net presents the smallest number 

of efficient bundles. 

 

 
Fig. 3 Efficient Providers 

The model moves inefficient bundles to the efficient point 

by reducing the input (price) and preserving the outputs (CPU, 

Memory, Storage) at their current levels. Therefore, the model 

focuses on the inefficient bundles and calculates the average 

reduction and the standard deviation of the price. As 

calculated, compute optimized inefficient bundles need a 

286.08$ price reduction on average, with a standard deviation 

s=408.95$. In the memory optimized group the average 

reduction of the price is 311.31$ and standard deviation is 

497,47$. Finally, in the storage group, the average reduction 

of the price is 578.23$ and the standard deviation 753.20$. 

The values of standard deviations reveal the lack of 

homogeneity among bundles, since they are rather widely 

spread around mean values. 

The proposed methodology is based on the benchmarking 

of efficient bundles. Each efficient bundle is used as a 

benchmark for other bundles in order to estimate relative 

efficiency. The more times each efficient bundle is applied as 

a benchmark, the more significant the benchmark is. In the 

compute group the most important bundle is Google2, which 

was used as a benchmark 189 times. The most significant 

bundle in the memory group is CloudSigma2, used as a 

benchmark 51 times and, finally, in the storage group 

Microsoft Azure1 is the most essential bundle, used as a 

benchmark 64 times. The characteristics of the above bundles 

are summarized in TABLE XI. 

 
TABLE XI 

IAAS CHARACTERISTICS OF THE MOST IMPORTANT CLOUD 

BUNDLES 

DMU CPU RAM Storage Price 
Operating 

System 

Google2 2 13 100 50 Linux 

CloudSigma2 1 16 50 62 Linux 

Microsoft 

Azure1 
2 16 500 96 Linux 

 

B. Model Results Including Non-functional Parameters 

The proposed DEA-model is also applied to a more 

complex group of cloud bundles, including the non-functional 

parameters. However, in this case the sample data has been 

enlarged because the different values of the categorical 

variables generate new bundles and consequently affect the 

price. In addition to the previous case, cloud bundles are 

described by Compute Power (vCPUs), Memory (GB), 

Storage (GB) and Price ($), as well as by 14 categorical 

parameters.  

The efficient DMUs are 39 out of 401, 48 out of 204 and 35 

out of 200 DMUs for the compute, memory and storage 

optimized instances, respectively. Thus, 9.72% of compute 

bundles and 23,5% of memory bundles are efficient. Finally, 

in the storage optimized group the rate of the efficient bundles 

is 17.5%. Fig. 4 illustrates the rates of the efficient and 

inefficient DMUs.  

 

 
Fig. 4 Overall evaluation of compute, memory and storages DMUs 

Despite the fact that the sample data includes 23 providers, 

only a proportion of them produce efficient bundles. The 

providers offering bundles with exceptional relative efficiency 

are presented in TABLE XII, TABLE XIII and TABLE XIV 

together with the corresponding number of efficient bundles. 

 
TABLE XII 

NUMBER OF EFFICIENT COMPUTE INSTANCES PER CLOUD 

PROVIDER 

Compute Optimized Group 

Providers Number of efficient cloud bundles 

Amazon 2 

Atlantic.net 1 

Cloudsigma 1 
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Cloudsolutions 4 

Cloudware 4 

Dreamhost 3 

e24cloud.com 1 

Exoscale 8 

Gigenet 1 

Google 1 

M5 1 

Microsoft Azure 2 

Storm 3 

VP.NET 1 

Zippycloud 6 

 

TABLE XIII 

NUMBER OF EFFICIENT MEMORY INSTANCES PER CLOUD 

PROVIDER 

Memory Optimized Group 

Providers Number of efficient cloud bundles 

Amazon 5 

Atlantic.net 1 

CloudSigma 5 

CloudSolutions 2 

Cloudware 3 

Dreamhost 3 

e24cloud.com 1 

eApps 1 

Exoscale 6 

Gigenet 2 

M5 3 

Microsoft Azure 3 

Storm 3 

VPS.NET 2 

Zippycloud 8 

 

 
TABLE XIV 

NUMBER OF EFFICIENT STORAGE INSTANCES PER CLOUD 

PROVIDER 

Storage Optimized Group 

Providers Number of efficient cloud bundles 

Amazon 3 

Atlantic.net 1 

Microsoft Azure 3 

CloudSigma 4 

Cloudsolutions 2 

Cloudware 1 

Dreamhost 2 

e24cloud.com 3 

eApps 1 

Google 1 

M5 2 

Storm 4 

VPS.NET 1 

Zettagrid 1 

Zippycloud 6 

 

Regarding the top cloud providers, Microsoft Azure, 

Google and Amazon, these are included among the providers 

with the efficient bundles with an exception of Google that has 

no efficient memory instances. As shown in TABLE XV, 10% 

compute bundles, 25% memory bundles and 16.66% storage 

bundles of Microsoft Azure lie on the efficient frontier. The 

efficient DMUs of Google for the compute and storage 

optimized groups are 5.26% and 6.25% respectively, whereas 

all of the memory optimized instances are considered to be 

inefficient. As far as it concerns Amazon, the efficient bundles 

for compute, memory and storage optimized instances are 

8.33%, 35.71% and 16.66% respectively. 

 

 
TABLE XV 

NUMBER OF EFFICIENT BUNDLES FOR THE 3 MOST POPULAR 

CLOUD PROVIDERS PER CATEGORY OF INSTANCES 

 Number of efficient cloud bundles 

Providers Compute Opt Memory Opt Storage Opt 

Microsoft Azure 2 3 3 

Google 1 0 1 

Amazon 2 5 3 

 

In the compute as well as in the memory group for all of the 

23 cloud providers, CloudSolutions5 is the most important 

efficient bundle, since it was used as a benchmark for other 

bundles more times. In addition, and regarding the storage 

group, CloudSolutions1 is the most significant bundle. The 

functional and the non-functional attributes of the most 

important bundles are summarized in TABLE XVI and 

TABLE XVII. 

 

 
TABLE XVI 

FUNCTIONAL ATTRIBUTES 

DMU CPU Memory Storage Price 
Times as 

benchmark 

CloudSolutions1 1 2 50 31$ 27 

CloudSolutions5 

(compute) 
2 16 200 119$ 100 

CloudSolutions5 

(memory) 
2 16 200 119$ 27 
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TABLE XVII 

NON-FUNCTIONAL ATTRIBUTES 

CloudSolutions1 

CloudSolutions5 

Encrypted Storage No 

Safe Harbor / EU Directive 

95/46/EC 
No 

SLA Level 99.95% 

Backup Storage No 

Free Support No 

Burstable CPU Fixed 

Auto-scaling No 

Resource usage Monitoring No 

Web Interface Yes 

API Yes 

One Account for All Locations No 

Image from Cloud Server Yes 

Limited Free Trial No 

Supported OS Linux 
 

 

Furthermore, the proposed approach indicates the average 

reduction and the standard deviation of the price required in 

order to move inefficient bundles to the efficient point. In the 

compute optimized instances the average reduction of the 

price is 521.96$ and standard deviation is 2163$. In addition, 

in the memory group the average reduction of the price is 

estimated to be 461.9$ and standard deviation is 1019.5$. 

Finally, in the storage group the average reduction is 802.3$ 

and standard deviation is s = 2098.3$. 

C. Comparison 

It is notable that the proportion of the bundles which 

include the non-functional requirements and lie on the 

efficient frontier is substantially increased as compared to the 

bundles with functional requirements only, indicating that 

non-functional requirements affect performance. This is 

graphically depicted in Fig. 5, Fig. 6 and Fig. 7. 

 

 
 

Fig. 5 Comparison between compute efficient instances with and without non-

functional attributes. 

  
Fig. 6 Comparison between memory efficient instances with and without non-

functional attributes. 

  
Fig. 7 Comparison between storage efficient instances with and without non-

functional attributes. 

Since the proposed model is input oriented, inefficient 

DMUs become efficient through the proportional reduction of 

their input [30] which corresponds to the reduction of price. 

An overall proportionate movement of the price, for each 

group (compute, memory, storage) is depicted in the figures 

below making obvious that non-functional parameters affect 

the proportionate price reduction. The proposed methodology 

introduces an input oriented model and therefore the 

proportionate movement indicates the price reduction of 

inefficient bundles in order to become efficient. 

The figures below illustrate distributions of price reduction for 

inefficient bundles. For comparison reasons, a normal 

distribution plot with the same mean and deviation is over 

imposed in each graph in order to give a better sense of the 

results. Proportionate movement describes the price reduction 

of inefficient bundles in order to become efficient and 

frequency indicates the number of inefficient bundles.  

Fig. 8 and Fig. 9 refer to compute inefficient bundles. They 

highlight that non-functional attributes succeed in moving a 

larger number of inefficient bundles to efficient frontier with 

less price reduction. The horizontal axis shows the amount of 

price reduction needed for each bundle in order to become 

efficient, while the vertical axis (Frequency) corresponds to 

the number of bundles met, that need the corresponding 

reduction. The majority of inefficient computed bundles, at a 

level of approximately 40%, can move to the efficient frontier 

with a maximum price reduction up to 100$ if non-functional 
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attributes are not taken into account. If non-functional 

parameters are included, the 41% of inefficient bundles 

become efficient with a price reduction up to 70$. 

 

 
Fig. 8 Distribution of price reduction for compute inefficient bundles without 

non-functional attributes. 

 
 

Fig. 9 Distribution of price reduction for compute inefficient bundles with 

non-functional attributes 

The same results regarding distributions of price reduction 

for memory group are illustrated in Fig. 10 and Fig. 11. The 

results show that the largest share of inefficient bundles (37%) 

without the non-functional parameters requires a price 

reduction of about 300$ in order to be efficient. Instead, 46% 

of cloud bundles that support non-functional factors require 

price reduction up to 150$. 

 
Fig. 10 Distribution of price reduction for memory inefficient bundles without 

non-functional attributes.. 

 
Fig. 11 Distribution of price reduction for memory inefficient bundles with 

non-functional attributes. 

In addition, in the storage group and without considering 

non-functional parameters, the greater part of inefficient 

bundles, almost 32.5%, becomes efficient by reducing the 

mean price at about 250$, as shown in Fig. 12. The 

incorporation of non-functional parameters is depicted in Fig. 

13, where 38.2% of inefficient bundles reach efficient frontier 

by reducing price up to 100$. All of the considered cases 

reveal the importance of the non-functional parameters to the 

shaping of efficient pricing schemes. 

 

 
Fig. 12 Distribution of price reduction for storage inefficient bundles without 

non-functional attributes. 

 
Fig. 13 Distribution of price reduction for storage inefficient bundles with 

non-functional attributes. 
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VI. CONCLUSIONS 

Cloud market is constantly growing and cloud providers 

offer numerous services with different pricing schemes, 

aiming to fulfill client requirements. Even though, clients need 

to choose the optimal cloud solution that meets with their 

requirements, the variety of cloud services in different pricing 

schemes causes confusion and sharpens clients' doubt of 

adopting cloud services. Although, pricing strategies are 

considered to be a powerful tool that classifies services, their 

complexity discourages clients, especially the non-

experienced ones. 

Therefore, relative efficiency is introduced to this paper, 

contributing to ranking cloud services based on the 

combination of performance and price. Cloud bundles were 

collected by the platform of Cloudorado for a number of 23 

providers and are described not only by functional parameters, 

such as CPU, memory and storage, but also by non-functional 

requirements being represented by security, reliability, 

elasticity, availability, portability and usability features. These 

characteristics mainly define the qualitative attributes of cloud 

bundles, which are expected to be very important to clients for 

the cloud computing services selection, but they have not been 

examined thoroughly yet so that their contribution is measured 

in some way. 

Towards this direction, the proposed methodology consists 

of a dual DEA model, which was applied to the whole dataset 

of collected cloud bundles and finally estimates their relative 

efficiency. It highlights the importance of non-functional 

attributes of cloud computing services to the performance, 

pointing out at the same time that high prices do not necessary 

signal high quality. According to the results, cloud providers 

that offer IaaS bundles including exclusively functional 

parameters present a smaller rate of efficient bundles 

comparing to providers that enrich their bundles with non-

functional attributes. Thus, non-functional parameters boost 

efficiency of cloud bundles and make vendors more 

competitive and profitable.  

Furthermore, the DEA methodology is used to provide 

decision makers with a valuable techno-economic analysis 

tool that focuses on different competing cloud computing 

services available in the market. The proposed model 

examines inefficient bundles as well and can direct cloud 

providers how to be efficient and competitive. It estimates 

price reduction that is necessary in order to move inefficient 

bundles to efficient frontier. Inefficient bundles that include 

non-functional attributes require a smaller price reduction than 

IaaS bundles that are based only on functional parameters 

(CPU, Storage, Memory).  

As in most cases, there is the limitation in this paper of 

minimizing exclusively the efficiency without including at the 

same time users’ requirements into the introduced DMU 

model. This is considered to indicate a good direction for 

future research in order to satisfy both the desired efficiency 

value and user requirement constraints. In addition, the 

extension of the DEA model by using and adopting efficiency 

indices (restricted weights) for input variables related to cloud 

providers is a way to incorporate subjective judgements about 

the degree of importance of non-functional parameters and 

how they individually affect relative performance of cloud 

services. More benefits will be also derived from this 

approach, since the DEA model can adapt easily to different 

estimations and various pricing strategies.  

Furthermore, the application of DEA would be much 

interesting with more non-parametric function under the same 

settings, by giving various values to each categorical variable 

and not just binary ones. Another research direction would be 

to apply, over the same dataset of IaaS bundles of services, 

some other decision making methodologies and alternative 

efficiency measures, such as AHP, TOPSIS, cross-efficiency 

DEA etc. and then compare the results with those obtained 

from the DEA model, so that customers are offered further 

support for their cloud computing services selection. Finally, it 

is highly recommended to analyze and apply these methods in 

the context of specific scenarios of use. 
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